Welfare of dairy cattle in conditions of global climate change

Keywords: climate; microclimate; temperature-humidity index; heat stress; animal comfort; biological markers.


This review of literature sources is devoted to the problem of the influance of climate change on dairy husbandry, as well as approaches to welfare evaluation of the animals and the search for reliable markers of the functional state of the body in conditions of high temperatures. Global climatic changes connected with rising temperatures and fluctuations in weather conditions have the influence on agrarian production in general and dairy husbandry in particular. Decrease of yield capacity and food value of plants as a natural source of forage for animal husbandry, favorable conditions for the development and spread of pathogenic microorganisms, as well as the direct action of extreme high temperatures on health, productivity and reproductive capacity of animals, cause significant economic losses in hot periods of the year, not only for tropical regions of the world, but also for most European countries. Today, among the immediate environmental tasks, priority in the context of global food security is the use of urgent measures and the search for long-term (perspective) strategies to prevent the possible consequences of climate change. It is known that horned cattle, especially highly productive horned cattles, are better tolerate to lower temperatures than high, because their thermoneutral zone, in most reports, is in the range from +5 to +20–25 °С. The animals, are being present in an artificial, limited space of premises, unable to show the whole  range of natural behavioral reactions, and therefore the level of their welfare depends entirely on the conditions created by man. Under such circumstances, monitoring of the air environment and its direct influence on the physiological state of dairy cattle is better done by calculating special indices that take into account several environmental parameters (temperature, relative humidity, air velocity), which act on the organism of animals in a dynamic complex. However, such indices have not been sufficiently disseminated among domestic researchers. Although for more than half a century, the most commonly used in the world practice for evaluation the comfort of animals during periods of heat, is a temperature-humidity index. It is convenient in calculation and informative enough. Numerous studies indicate a close relationship between temperature-humidity index and animal body temperature, respiratory rate and heart rate, which are widely used to elevation the clinical conditions during thermal stress. The relatively high correlation between temperature-humidity index and productivity (milk yield and content of its components) allows using this index in prognostic models of influence of environmental on the dairy cattle. A various biological markers of the functional state of animals deserve attention. The possibility using such markers as predictors of the effects of high temperatures on the welfare of animals is reported in the proposed literary review.


Download data is not yet available.


Abdela, N., & Jilo, K. (2016). Impact of climate change on livestock health: A review. Global Veterinaria, 16 (5), 419–424.

Afsal, A, Sejian, V, Bagath, M, Krishnan, G, Devaraj, C, & Bhatta, R. (2018). Heat stress and livestock adaptation: neuro-endocrine regulation. International Journal of Veterinary and Animal Medicine, 1(2), 1–8.

Ammer, S., Lambertz, C., & Gauly, M. (2016). Comparison of different measuring methods for body temperature in lactating cows under different climatic conditions. Journal of Dairy Research, 83(02), 165–172.

Anderson, N.G. (1997). Cold housing and open housing – effects on health, management and production dairy cattle. Proceedings of the 9th International Congress in Animal Hygiene, 17–21 August 1997, Helsinki, Finland, 481–487.

Baldassarre, M., Naldi, M., Domenicali, M., Volo, S., Pietra, M., Dondi, F., Caraceni, P., & Peli, A. (2017). Simple and rapid LC–MS method for the determination of circulating albumin microheterogeneity in veal calves exposed to heat stress. Journal of Pharmaceutical and Biomedical Analysis, 144, 263–268.

Behera, R., Chakravarty, A. K., Sahu, A., Kashyap, N., Rai, S., & Mandal, A. (2017). Identification of best temperature humidity index model for assessing impact of heat stress on milk constituent traits in Murrah buffaloes under subtropical climatic conditions of Northern India. Indian Journal of Animal Research, (of).

Bernabucci, U., Ronchi, B., Lacetera, N., & Nardone, A. (2002). Markers of oxidative status in plasma and erythrocytes of transition dairy cows during hot season. Journal of Dairy Science, 85(9), 2173–2179.

Beux, S., Cassandro, M., Nogueira, A., & Waszczynskyj, N. (2017). Effect of THI on milk coagulation properties of Holstein-Friesian dairy cattle. Revista Brasileira de Zootecnia, 46(5), 429–432.

Binsiya T. K., Sejian V., Bagath M., Krishnan G., Hyder I., Manimaran A., Lees A. M., Gaughan J. B. & Bhatta R. (2016). Significance of hypothalamic-pituitary-adrenal axis to adapt to climate change in livestock. International Research Journal of Agricultural and Food Sciences, 2 (1), 1–20.

Bohmanova, J., Misztal, I., & Cole, J. B. (2007). Temperature-humidity indices as indicators of milk production losses due to heat stress. Journal of Dairy Science, 90(4), 1947–1956.

Bravo, D. M., & Wall, E. H. (2016). The rumen and beyond: Nutritional physiology of the modern dairy cow. Journal of Dairy Science, 99(6), 4939–4940.

Buryakov N. P., Buryakova M. A., & Aleshin D. E. (2016). Teplovoy stress i osobennosti kormleniya molochnogo skota [Heat stress and heat stress and feeding features of the dairy cattle]. Rossiyskiy Veterinarnyiy Jurnal, 3, 5–13 (in Russian).

Carabaño, M. J., Logar, B., Bormann, J., Minet, J., Vanrobays, M.-L., Díaz, C., Tychon, B., Gengler, N., & Hammami, H. (2016). Modeling heat stress under different environmental conditions. Journal of Dairy Science, 99(5), 3798–3814.

Chandra, V., Sejian, V., & Sharma, G. T. (2015). Strategies to improve livestock reproduction under the changing climate scenario. Climate Change Impact on Livestock: Adaptation and Mitigation, 425–439.

CIGR (International Commission of Agricultural and Biosystems Engineering) (1984) Climatization of Animal Houses. Report of Working Group on Climatization of Animal Houses. Aberdeen, Scotland, no 94.1.

Daltro, D. S., Fischer, V., Alfonzo, E. P. M., Dalcin, V. C., Stumpf, M. T., Kolling, G. J., Silva, M. V. G. B. & McManus, C. (2017). Infrared thermography as a method for evaluating the heat tolerance in dairy cows. Revista Brasileira de Zootecnia, 46(5), 374–383.

Das, R., Sailo, L., Verma, N., Bharti, P., Saikia, J., Imtiwati, & Kumar, R. (2016). Impact of heat stress on health and performance of dairy animals: A review. Veterinary World, 9(3), 260–268.

Dikmen, S., & Hansen, P. J. (2009). Is the temperature-humidity index the best indicator of heat stress in lactating dairy cows in a subtropical environment? Journal of Dairy Science, 92(1), 109–116.

Dunshea, F. R., Leury, B. J., Fahri, F., DiGiacomo, K., Hung, A., Chauhan, S., Clarke, I. J., Collier R. J, Little, S., Baumgard, L., & Gaughan, J. B. (2013). Amelioration of thermal stress impacts in dairy cows. Amelioration of thermal stress impacts in dairy cows. Animal Production Science, 53(9), 965–975.

Escarcha, J. F., Lassa, J. A., Palacpac, E. P., & Zander, K. K. (2018b). Understanding climate change impacts on water buffalo production through farmers’ perceptions. Climate Risk Management, 20, 50–63.

Escarcha, J., Lassa, J., & Zander, K. (2018a). Livestock under climate change: a systematic review of impacts and adaptation. Climate, 6(3), 54.

Fan, C., Su, D., Tian, H., Li, X., Li, Y., Ran, L., Hu, R. & Cheng, J. (2018). Liver metabolic perturbations of heat-stressed lactating dairy cows. Asian-Australasian Journal of Animal Sciences, 31(8), 1244–1251.

FAO (Food and Agriculture Organization) (2011). Rural structures in the tropics. Design and development, Rome, pp. 225–298.

Fiedler, M., Hoffmann, G., von Bobrutzki, K., Matzarakis, A. (2010). Biometeorological investigations in dairy cowsheds. In: Matzarakis, A., Mayer, F., & Chmielewski, M. (Eds.) Proceedings of the 7th Conference in Biometeorology. BIOMET 12–14 April 2010, Freiburg, Germany.

Fodor, N., Foskolos, A., Topp, C. F. E., Moorby, J. M., Pásztor, L., & Foyer, C. H. (2018). Spatially explicit estimation of heat stress-related impacts of climate change on the milk production of dairy cows in the United Kingdom. PLOS ONE, 13(5), e0197076.

Gantner, V., Bobic, T., Gantner, R., Gregic, M., Kuterovac, K., Novakovic, J., & Potocnik, K. (2017). Differences in response to heat stress due to production level and breed of dairy cows. International Journal of Biometeorology, 61(9), 1675–1685.

Gantner, V., Mijić, P., Kuterovac, K., Solić, D., & Gantner, R. (2011). Temperature-humidity index values and their significance on the daily production of dairy cattle. Daily production of dairy cattle. Mljekarstvo, 61 (1), 56–63.

Garcia, A. B., Angeli, N., Machado, L., de Cardoso, F. C., & Gonzalez, F. (2015). Relationships between heat stress and metabolic and milk parameters in dairy cows in southern Brazil. Tropical Animal Health and Production, 47(5), 889–894.

Graves, K. L., Seibert, J. T., Keating, A. F., Baumgard, L. H., & Ross, J. W. (2018). Characterizing the acute heat stress response in gilts: II. Assessing repeatability and association with fertility. Journal of Animal Science, 96(6), 2419–2426.

Hill, D. L., & Wall, E. (2014). Dairy cattle in a temperate climate: the effects of weather on milk yield and composition depend on management. Animal, 9(01), 138–149.

Hooper, H. B., Salomão, D. D. O. S., Ayres, G. F., Titto, C. G., Santos, R. M. dos, & Nascimento, M. R. B. de M. (2018). Conforto térmico de vacas leiteiras mestiças durante a inseminação e a relação com a taxa de concepção. Revista Acadêmica: Ciência Animal, 16, 1.

Ivanov, Ju. G., Zaginajlov, V. I., & Ponizovkin, D. A. (2016). Avtomatizirovannaja sistema upravlenija jelektroprivodom mestnoj ventiljacii korovnika s upravljaemym vektorom potoka vozduha [Automated control system of cow farm electric local ventilation with vectoring air flow]. Vestnik Vserossiyskogo Nauchno-Issledovatelskogo Instituta Elektrifikatsii Selskogo Hozyaystva, 4(25), 34–40 (in Russian).

Kaasik, A., & Maasikmets, M. (2013). Concentrations of airborne particulate matter, ammonia and carbon dioxide in large scale uninsulated loose housing cowsheds in Estonia. Biosystems Engineering, 114(3), 223–231.

Kekana, T. W., Nherera-Chokuda, F. V., Muya, M. C., Manyama, K. M., & Lehloenya, K. C. (2018). Milk production and blood metabolites of dairy cattle as influenced by thermal-humidity index. Tropical Animal Health and Production, 50(4), 921–924.

Kim, W. S., Lee, J.-S., Jeon, S. W., Peng, D. Q., Kim, Y. S., Bae, M. H., Jo, Y. H, & Lee, H. G. (2018). Correlation between blood, physiological and behavioral parameters in beef calves under heat stress. Asian-Australasian Journal of Animal Sciences, 31(6), 919–925.

Kismul, H., Spörndly, E., Höglind, M., Næss, G., & Eriksson, T. (2018). Morning and evening pasture access – comparing the effect of production pasture and exercise pasture on milk production and cow behaviour in an automatic milking system. Livestock Science, 217, 44–54.

Krishnan, G., Bagath, M., Pragna, P., Vidya, M. K., Aleena, J., Archana, P. R., Sejian, V., & Bhatta, R. (2017). Mitigation of the heat stress impact in livestock reproduction. Theriogenology.

Kumar, P., Upadyay, R. C., Kumar, R., Chaudhary, P. K., Maurya, P. K., Kumar, R., Yadav, V., & Kumar, M. (2018). Evaluation and comparison of heat stress indices for cattle and buffaloes. International Journal of Current Microbiology and Applied Sciences, 7, 292–298.

Lambertz, C., Sanker, C., & Gauly, M. (2014). Climatic effects on milk production traits and somatic cell score in lactating Holstein-Friesian cows in different housing systems. Journal of Dairy Science, 97(1), 319–329.

Laporta, J., Fabris, T. F., Skibiel, A. L., Powell, J. L., Hayen, M. J., Horvath, K., Miller-Cushon, E.K., & Dahl, G. E. (2017). In utero exposure to heat stress during late gestation has prolonged effects on the activity patterns and growth of dairy calves. Journal of Dairy Science, 100(4), 2976–2984.

Liu, Z., Ezernieks, V., Wang, J., Arachchillage, N. W., Garner, J. B., Wales, W. J., Cocks, B. G., & Rochfort, S. (2017). Heat stress in dairy cattle alters lipid composition of milk. Scientific Reports, 7(1).

Lopatuhin, A. (2013). Izrailskiy opyit i ekonomicheskaya effektivnost vnedreniya ohladitelnyih sistem v molochnom jivotnovodstve [Israeli experience and cost-effectiveness of the introduction of cooling systems in dairy farming]. Molochnoe i Myasnoe Skotovodstvo, 3, 30–31 (in Russian).

Macías-Cruz, U., Correa-Calderón, A., Mellado, M., Meza-Herrera, C. A., Aréchiga, C. F., & Avendaño-Reyes, L. (2018). Thermoregulatory response to outdoor heat stress of hair sheep females at different physiological state. International Journal of Biometeorology, 62(12), 2151–2160.

Mader, T. L., Davis, M. S., & Brown-Brandl, T. (2006). Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science, 84(3), 712–719.

Manimaran, A., Beena, V., Kurien, E.K., Sejian, V., & Bhatta, R. (2017). Role of heat shock proteins in livestock adaptation to heat stress. Journal of Dairy, Veterinary & Animal Research, 5(1).

MMM (Finnish Ministry of Agriculture and Forestry) (2002) Heating and ventilation of agricultural production houses. MMM-RMO C2.2.

Molina Benavides, R. A., Sánchez-Guerrero, H., & Stanislao Atzori, A. (2018). A conceptual model to describe heat stress in dairy cows from actual to questionable loops. Acta Agronómica, 67(1), 59–64.

Molodkovets, O., & Zakharenko, M. (2016). Microclimate livestock buildings and premises for loose–boxed maintenance, forsed and voluntary milking cows. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, 18, 4(72), 41–46.

Monteiro, A. P. A., Tao, S., Thompson, I. M., & Dahl, G. E. (2014). Effect of heat stress during late gestation on immune function and growth performance of calves: Isolation of altered colostral and calf factors. Journal of Dairy Science, 97(10), 6426–6439.

Ortiz-Colón, G., Fain, S. J., Parés, I. K., Curbelo-Rodríguez, J., Jiménez-Cabán, E., Pagán-Morales, M., & Gould, W. A. (2018). Assessing climate vulnerabilities and adaptive strategies for resilient beef and dairy operations in the tropics. Climatic Change, 146(1-2), 47–58.

Papanastasiou, D. K., Panagakis, P., Anestis, V., Bartzanas, T., Skoufos, I., Tzora, A., & Kittas, C. (2018). Environmental conditions, potential heat-stress state and their relations in a sheep barn under hot climate. Agricultural Engineering International: CIGR Journal, Special issue: 1–13.

Piron, O., & Malinin, I. (2015). Nuzhno li predotvrashhat’ teplovoj stress u dojnyh korov? [Is it necessary to prevent heat stress in dairy cows?]. Jeffektivnoe Zhivotnovodstvo, 3–4(113), 18–20 (in Russian).

Poikalainen, V., Praks, J., Veermäe, I., & Kokin E. (2012). Infrared temperature patterns of cow’s body as an indicator for health control at precision cattle farming. Agronomy Research Biosystem Engineering, 1, 187–194.

Puhach, A. M., Vysokos, M. P., Mylostyvyi, R. V, Tiupina, N. V., & Kalinichenko, A. O. (2016). Pristrіj dlja zvolozhennja ta oholodzhennja povіtrja v tvarinnic’komu primіshhennі [Device for humidifying and cooling air in animal housing]. Ukraine Patent No. 108437 (in Ukrainian).

Rashamol, V. P., Sejian, V., Bagath, M., Krishnan, G., Archana, P. R. & Bhatta, R. (2018). Physiological adaptability of livestock to heat stress: an updated review. Journal of Animal Behaviour and Biometeorology, 6, 62–71.

Samal, L. (2013). Heat stress in dairy cows – reproductive problems and control measures. International Journal of Livestock Research, 3(3), 14–23.

Sathiyabarathi, M., Jeyakumar, S., Manimaran, A., Jayaprakash, G., Pushpadass, H. A., Sivaram, M., Ramesha, K.P, Das, D.N., Kataktalware, M.A, Prakash, M.A., & Kumar, R. D. (2016). Infrared thermography: A potential noninvasive tool to monitor udder health status in dairy cows. Veterinary World, 9(10), 1075–1081.

Scanavez, A. L. A., Fragomeni, B., & Mendonça, L. G. D. (2018). Animal factors associated with core body temperature of nonlactating dairy cows during summer. Journal of Animal Science.

Schüller, L. K., & Heuwieser, W. (2016). Measurement of heat stress conditions at cow level and comparison to climate conditions at stationary locations inside a dairy barn. Journal of Dairy Research, 83(03), 305–311.

Sejian, V., Bhatta, R., Gaughan, J. B., Dunshea, F. R., & Lacetera, N. (2018). Review: Adaptation of animals to heat stress. Animal, 1–14.

Sejian, V., Pragna, P., Archana, P. R., Aleena, J., Krishnan, G., Bagath, M., Manimaran, A., Beena, V., Kurien, E.K., Varma, G., & Bhatta, R. (2017). Heat stress and dairy cow: impact on both milk yield and composition. International Journal of Dairy Science, 12(1), 1–11.

Skibiel, A. L., Zachut, M., do Amaral, B. C., Levin, Y., & Dahl, G. E. (2018). Liver proteomic analysis of postpartum Holstein cows exposed to heat stress or cooling conditions during the dry period. Journal of Dairy Science, 101(1), 705–716.

St-Pierre, N. R., Cobanov, B., & Schnitkey, G. (2003). Economic losses from heat stress by us livestock industries. Journal of Dairy Science, 86, 52–77.

Sun, Y., Liu, J., Ye, G., Gan, F., Hamid, M., Liao, S., & Huang, K. (2018). Protective effects of zymosan on heat stress-induced immunosuppression and apoptosis in dairy cows and peripheral blood mononuclear cells. Cell Stress and Chaperones, 23(5), 1069–1078.

Tamami, F. Z., Hafezian, H., Mianji, G.R., Abdullahpour, R., & Gholizadeh, M. (2018). Effect of the temperature-humidity index and lactation stage on milk production traits and somatic cell score of dairy cows in Iran. Songklanakarin Journal of Science and Technology, 40 (2), 379–383.

Vaculíková, M., Komzáková, I., & Chládek, G. (2017). The effect of low air temperature on behaviour and milk production in Holstein dairy cows. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 65(5), 1623–1627.

Vasilenko, T., Milostiviy, R., & Kalinichenko, O. (2018a). Influence of high temperature on dairy productivity of Ukrainian Schwyz. Relevant Issues of Development and Modernization of the Modern Science: The Experience of Countries of Eastern Europe and Prospects of Ukraine.

Vasilenko, Т. О., Milostiviy, R. V., Kalinichenko, О. О., Gutsulyak, G. S., & Sazykina, E. M. (2018b). Influence of high temperature on dairy productivity of Ukrainian Schwyz. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, 20(83), 97–101.

Voloshchuk, V. M., & Khotsenko, A. V. (2017). Dynamika temperatury povitria ta vnutrishnikh elementiv konstruktsii korivnyka karkasnoho typu za dii faktoriv zovnishnoho seredovyshcha [Dynamics of air temperature and internal structural elements of the barn frame type on effects of environmental factors]. Visnyk Sumskoho Natsionalnoho Ahrarnoho Universytetu, 5(2), 37–41 (in Ukrainian).

Von Bobrutzki, K., Berg, W., Mellmann, J., & Brunsch, R. (2012). Concept of a low-energy dairy barn with forced ventilation. Proceedings of CIGR International Conference of Agricultural Engineering, July 8–12, Valencia, Spain.

Vysokos, M. P., Mylostyvyi R. V., Tyupina N. P., & Kalinichenko, А. О. (2015). Zoogigijenichna ocinka umov utrymannja molochnogo gurtu golshtyns’koi’ hudoby za parametramy mikroklimatu monobloku korivnyka v regioni Prydniprov’ja [Hygienic assessing conditions of Holstein dairy cattle in microclimate parameters monoblock cowshed in the region Pridneprovya]. Science and Technology Bulletin of SRC for Biosafety and Environmental Control of Agro-Industrial Complex, 3(4), 74–78 (in Ukrainian).

Wang, X., Gao, H., Gebremedhin, K. G., Bjerg, B. S., Van Os, J., Tucker, C. B., & Zhang, G. (2018). A predictive model of equivalent temperature index for dairy cattle (ETIC). Journal of Thermal Biology, 76, 165–170.

Wangui, J. C., Bebe, B. O., Ondiek, J. O., & Oseni, S. O. (2018). Application of the climate analogue concept in assessing the probable physiological and haematological responses of Friesian cattle to changing and variable climate in the Kenyan Highlands. South African Journal of Animal Science, 48(3), 572.

Wolfenson, D., Flamenbaum, I., & Berman, A. (1988). Dry period heat stress relief effects on prepartum progesterone, calf birth weight, and milk production. Journal of Dairy Science, 71(3), 809–818.

Zakharenko, M., Voloshchuk, V., & Khotsenko, A. (2018). Produktyvnist koriv zarubizhnoi selektsii za bezpryviazno-boksovoho utrymannia ta dii vysokoi temperatury povitria [The productivity of cows of foreign breeding is impaired-boxing and exposure to high air temperature]. Naukovyi Visnyk Natsionalnoho Universytetu Bioresursiv i Pryrodokorystuvannia Ukrainy, 271, 225–234 (in Ukrainian).

Abstract views: 461
PDF Downloads: 250
How to Cite
Mylostyvyi, R., & Sejian, V. (2019). Welfare of dairy cattle in conditions of global climate change. Theoretical and Applied Veterinary Medicine, 7(1), 47-55. https://doi.org/10.32819/2019.71009

Most read articles by the same author(s)