Influence of various ventilation type on microclimate parameters, productivity of lactating sows, and growth of suckling piglets in spring and autumn seasons

Keywords: productivity; ventilation; microclimate; air; temperature; gas composition; sow; pig; multiple birth; growth; survival rate


Technological group of lactating sows with suckling piglets, are very sensitive to any climate change. They are basis for the next development and implementation of their genetic potential, therefore one of the most important issues of housing is the right choice of the microclimate creation system. One of the main tasks in this case is also the reduction of energy costs to provide proper parameters, both for animals and for their service staff. The effect of microclimate parameters created by means of traditional and geothermal ventilation systems on the performance of lactating sows and the growth of suckling piglets in the spring and autumn seasons are understood by us. The analysis of sows’ performance was carried out according to the following parameters: number and weight of nest of newborn piglets, multiple birth, large-foetus fertility, number of piglets at weaning, survival rate, individual live weight and weight of the nest at this time. The analysis of the intensity of growth of piglets was studied by absolute, daily average and relative live weight gain. For a comprehensive assessment of the reproductive qualities of the breeding stock, which was held under different conditions of microclimate creation, the estimated index of the design of M. D. Berezovsky (1986) was used. According to the results of the experiment, both ventilation systems provided optimal indicators of air humidity, speed of its movement and maintained gas composition in the premises within the recommended limits. The geothermal room ventilation system allows you to create more comfortable temperature conditions for both piglets and sows, compared with the traditional ventilation system. The best microclimate conditions created by the geothermal ventilation system in the pigsty for carrying out farrowing contributed to improving the survival rate of piglets before the weaning period, the intensity of their growth, and the increase in live weight gain and nest mass at weaning both in autumn and spring. The research in this direction is planned to continue for other technological groups of pigs, and their results will be used in the design and reconstruction of pig farms.


Download data is not yet available.


Antonenko, P. P., Dorovskych, A. V., Vysokos, M. P., Mylostyvyi, R. V., Kalinichenko, O. O., & Vasilenko, T. O. (2018). Methodological bases and methods of scientific research in veterinary hygiene, sanitary and expertise. Dnipro, “Svіdler A.L.” (in Ukraine).

Avylov, C. H., & Denisov, A. (2001). Vlijanie mikroklimata v svinarnikah na zdorov’e i produktivnost’ zhivotnyh [The effect of microclimate in pig houses on the health and productivity of animals]. Svinovodstvo, 2, 15–26 (in Russian).

Berezovskiy, N. D., Pochernyaev, F. K., & Korotkov, V. A. (1986). Metodika modelirovaniya indeksov dlya ispol’zovaniya ikh v selektsii sviney [The method of modeling indices for their use in breeding pigs]. Methods for improving the selection, breeding and reproduction of pigs (guidelines). Moscow (in Russian).

Broom, D. M., Mendl, M. T., & Zanella, A. J. (1995). A comparison of the welfare of sows in different housing conditions. Animal Science, 61(2), 369–385.

Caldara, F. R., Santos, L. S. dos, Machado, S. T., Moi, M., de Alencar Nääs, I., Foppa, L., Garcia, R. G., & de Kássia Silva dos Santos, R. (2014). Piglets’ surface temperature change at different weights at birth. Asian-Australasian Journal of Animal Sciences, 27(3), 431–438.

Gerasymchuk, V. M. (2018). Ocinka i vdoskonalennja system ventyljacii’ svynarnykiv riznogo pryznachennja [Estimation and improvement of ventilation systems for pigs of different purposes]. Extended abstract of thesis. Poltava (in Ukrainian).

Gryshhenko, S. M. (2012). Vplyv umov utrymannja na pokaznyky rostu remontnyh svynok [Influence of maintenance conditions on growth rates of repair guinea pigs]. Visnyk Agrarnoi Nauky, 1, 83–84 (in Ukrainian).

Hodosovskij, D. N. (2017). Mikroklimat v svinovodcheskih zdanijah dlja remontnyh svinok i svinomatok mjasnogo napravlenija produktivnosti. Jeffektivnoe Zhivotnovodstvo, 8 (138), 26–28 (in Russian).

Honeyman, M. S., McGlone, J. J., Kliebenstein, J. B., & Larson, B. E. (2001). Outdoor pig production. In: Pork industry handbook, Cooperative Extension Service, Oklahoma State University: Stillwater, Oklahoma.

Kozyr, V. (2006). Vplyv mikroklimatu na efektyvnist’ vyroshhuvannja svynej [Influence of microclimate on the efficiency of growing pigs]. Tvarynnyctvo Ukrainy, 5, 9–10 (in Ukrainian).

Larsen, M. L. V., Thodberg, K., & Pedersen, L. J. (2017). Radiant heat increases piglets’ use of the heated creep area on the critical days after birth. Livestock Science, 201, 74–77.

Líkař, K. (2009). Vliv různé úrovně řízeného mikroklimatu na dosahované parametry užitkovosti u vybraných kategorií prasat [Influence of different level of controlled microclimate on achieved performance parameters for selected categories of pigs]. Praha, FAPPZ.

Milostivyj, R. V., Visokos, N. P., Priluckaja, E. V. & Tihonenko, V. A. (2016). Meroprijatija po stabilizacii mikroklimata v zhivotnovodcheskih pomeshhenijah v zharkih pogodnyh uslovijah. Prioritetnye i innovacionnye tehnologii v zhivotnovodstve – osnova modernizacii agropromyshlennogo kompleksa Rossii. Stavropol’, 291–295 (in Russian).

Mun, H.-S., Ahmed, S. T., Islam, M. M., Park, K.-J., & Yang, C.-J. (2015). Retrofitting of a pig nursery with solar heating system to evaluate its ability to save energy and reduce environmental pollution. Engineering in Agriculture, Environment and Food, 8(4), 235–240.

Narymbetov, M. S. (2016). Razrabotka putej optimizacii mikroklimata [Development of ways to optimize the microclimate]. Vestnik Kyrgyzskogo Nacional’nogo Agrarnogo Universiteta im. K.I. Skrjabina, 4 (40), 37–44 (in Russian).

Patel, P. D., Srivastava, A. K., Chauhan, H. D., Ankuya, K. J., Prajapati, R. K., & Paregi, A. B. (2018). Geothermal ventilation system for animal house: A new approach. International Journal of Current Microbiology and Applied Sciences, 7(06), 1850–1859.

Povod, M. H. (2014). Vplyv tekhnolohichnykh osoblyvostei na vidhodivelni pokaznyky svynei [The influence of technological peculiarities on fattening rate of pigs]. Visnyk Sumskoho Natsionalnoho Ahrarnoho Universytetu, 2/2(25), 30–36 (in Ukrainian).

Povod, M. G., & Voloschuk,V. M. (2013). Vplyv umov utrymannja na reproduktyvni jakosti svynomatok [The influence of keeping conditions on reproductive traits of sows]. Svynarstvo, 62, 27–32 (in Ukrainian).

Shpetnyj, N. B., & Povod, N. G. (2018). Mikroklimat pomeshhenij i produktivnost’ gibridnyh porosjat pri razlichnyh sistemah ventilirovanija v uslovijah promyshlennogo kompleksa [Microclimate of premises and productivity of hybrid pigs with different ventilation systems in the conditions of industrial complex]. Zootehnie şi Biotehnologii agricole : materialele Simpozionului Ştiinţific Internaţional “85 ani ai Facultăţii de Agronomie – realizări şi perspective”, dedicat aniversării a 85 de ani de la fondarea Universităţii Agrare de Stat din Moldova. Chişinău, 52(2), 324-328 (in Russian).

Starodubets, A., & Bondar, A. (2015). Dependence of reproduction quality of pig population on the season of the year. Ukrainian Black Sea Region Agrarian Science, 2 (84), 100–103 (in Ukrainian).

Starodubets, O. (2015). The influence of year season on reproductive qualities of sows. Ukrainian Black Sea Region Agrarian Science, 2(94), 155–161 (in Ukrainian).

Stinn, J. P., & Xin, H. (2014). Heat lamp vs. heat mat as localized heat source in swine farrowing crate.

Tamvakidis, S., Firfiris, V. K., Martzopoulou, A., Fragos, V. P., & Kotsopoulos, T. A. (2015). Performance evaluation of a hybrid solar heating system for farrowing houses. Energy and Buildings, 97, 162–174.

Tabase, R. K., Millet, S., Brusselman, E., Ampe, B., Sonck, B., & Demeyer, P. (2018). Effect of ventilation settings on ammonia emission in an experimental pig house equipped with artificial pigs. Biosystems Engineering, 176, 125–139.

Voloshchuk, V. M., & Herasymchuk, V. N. (2017). Level of harmful gases in air of the section for farrow at different seasons of a year and conditions of microclimate. Scientific Reports National University of Life and Environmental Sciences of Ukraine, 2, 1–11 (in Ukrainian).

Wheeler E. F., G. Vasdal, A. Flø, & K. E. Bøe. (2008). Static space requirements for piglet creep area as influenced by radiant temperature. Transactions of the ASABE, 51(1), 271–278.

Wang, X., & Zhang, Y. (n.d.) (2005). Experimental study of effect of ventilation on animal environment in a swine building. Livestock Environment VII. Beijing, China.

Zhelykh, V., Dzeryn, O., Shapoval, S., Furdas, Y., & Piznak, B. (2017). Study of the thermal mode of a barn for piglets and a sow, created by combined heating system. Eastern-European Journal of Enterprise Technologies, 5(8 (89)), 45–50.

Zong, C. (2014). Precision zone ventilation design and application in pig housing. Precision Zone Ventilation Design and Application in Pig Housing.

Abstract views: 192
PDF Downloads: 186
How to Cite
Zhyzhka, S. V., Povod, M. H., & Mylostyvyi, R. V. (2019). Influence of various ventilation type on microclimate parameters, productivity of lactating sows, and growth of suckling piglets in spring and autumn seasons. Theoretical and Applied Veterinary Medicine, 7(2), 90-96.