Features of the formation and monitoring of the microclimate in non-insulated barns: unresolved issues

Keywords: naturally ventilated barns; design features; cow comfort; technical solutions; heat stress; modeling.


Modern non-insulated barns (NB) for free-stall housing of dairy cows differ from traditional (typical) capital buildings. The formation of the microclimate in such farms is significantly dependent on the state of the environment and their design features. The aim of the work was to give a review of the literature and the results of our own research on creating comfortable conditions for dairy cows in the NB. Our studies indicate the heterogeneity of the microclimate formation in different parts of the NB, which was largely due to the state of the external environment. The use of only natural ventilation through open side curtains and light ridges, as well as additional mechanical ventilation (due to horizontal axial fans) cannot always provide comfortable conditions for animals, especially in hot periods of the year. The literature analysis showed that this can be caused by factors affecting the formation and movement of air masses in the building itself (depending on the number of animals, the condition of the litter, the operation of internal equipment, including space-planning and design features, type and quality of materials of enclosing structures) as well as the weather conditions outside buildings (temperature, humidity, wind strength and also relief). Investigations related to remote methods of microclimate control (using appropriate portable devices) and identification of (critical) control points of deterioration of the air environment in NBs will be promising. Monitoring of them will allow timely to adopt the necessary management decisions for ensuring the comfort of dairy cows in extreme weather conditions. Climate prediction methods based on meteorological data in the area of the NB location and the development of intelligent ventilation systems using mathematical modeling that take into account the behavioral and physiological responses of animals to environmental changes will be especially in demand.


Download data is not yet available.


Allen, J. D., Hall, L. W., Collier, R. J., & Smith, J. F. (2015). Effect of core body temperature, time of day, and climate conditions on behavioral patterns of lactating dairy cows experiencing mild to moderate heat stress. Journal of Dairy Science, 98(1), 118–127.
Andreasen, S. N., & Forkman, B. (2012). The welfare of dairy cows is improved in relation to cleanliness and integument alterations on the hocks and lameness when sand is used as stall surface. Journal of Dairy Science, 95(9), 4961–4967.
Bezerra, M. A., Santelli, R. E., Oliveira, E. P., Villar, L. S., & Escaleira, L. A. (2008). Response surface methodology (RSM) as a tool for optimization in analytical chemistry. Talanta, 76(5), 965–977.
Bjerg, B., Norton, T., Banhazi, T., Zhang, G., Bartzanas, T., Liberati, P., Cascone, G., Lee, I.-B., & Marucci, A. (2013). Modelling of ammonia emissions from naturally ventilated livestock buildings. Part 1: Ammonia release modelling. Biosystems Engineering, 116(3), 232–245.
Bohmanova, J., Misztal, I., & Cole, J. B. (2007). Temperature-humidity indices as indicators of milk production losses due to heat stress. Journal of Dairy Science, 90(4), 1947–1956.
Broucek, J., Ryba, S., Dianova, M., Uhrincat, M., Soch, M., Sistkova, M., Mala, G, & Novak, P. (2019). Effect of evaporative cooling and altitude on dairy cows milk efficiency in lowlands. International Journal of Biometeorology, 64(3), 433–444.
Bustos-Vanegas, J. D., Hempel, S., Janke, D., Doumbia, M., Streng, J., & Amon, T. (2019). Numerical simulation of airflow in animal occupied zones in a dairy cattle building. Biosystems Engineering, 186, 100–105.
Calamari, L., Calegari, F., & Stefanini, L. (2009). Effect of different free stall surfaces on behavioural, productive and metabolic parameters in dairy cows. Applied Animal Behaviour Science, 120(1-2), 9–17.
Collier, R. J., Dahl, G. E., & VanBaale, M. J. (2006). Major advances associated with environmental effects on dairy cattle. Journal of Dairy Science, 89(4), 1244–1253.
Cook, N. B., Mentink, R. L., Bennett, T. B., & Burgi, K. (2007). The effect of heat stress and lameness on time budgets of lactating dairy cows. Journal of Dairy Science, 90(4), 1674–1682.
Dahl, G. E., Tao, S., & Monteiro, A. P. A. (2016). Effects of late-gestation heat stress on immunity and performance of calves. Journal of Dairy Science, 99(4), 3193–3198.
Fedorenko, I. YA., Kapustin, N. I., Kapustin, V. N., & Byirdin, I. N. (2010). Matematicheskoe modelirovanie svobodnoy (estestvennoy) konvektsii v jivotnovodcheskih pomescheniyah bolshoy vmestimosti [Mathematical modeling of free (natural) convection in large-capacity livestock buildings]. Vestnik Altayskogo Gosudarstvennogo Agrarnogo Universiteta, 11 (73), 66–70 (in Russian)
Teye, F., Gröhn, H., Pastell, M., Hautala, M., Pajumägi, A., Praks, J., Poikalainen, V., Kivinen, T., & Ahokas, J. (2006). Microclimate and gas emissions in cold uninsulated dairy buildings. Portland, Oregon, July 9–12.
Fregonesi, J. A., Tucker, C. B., & Weary, D. M. (2007). Overstocking reduces lying time in dairy cows. Journal of Dairy Science, 90(7), 3349–3354.
Gridin, V. F., & Tyagunov, R. S. (2012). Parametryi mikroklimata korovnika pri besprivyaznoy tehnologii v razlichnyie sezonyi goda [Parameters of the microclimate of the barn when the content without a leash in different seasons]. Agrarnyiy Vestnik Urala,11–2 (106), 25–26 (in Russian)
Gunn, K. M., Holly, M. A., Veith, T. L., Buda, A. R., Prasad, R., Rotz, C. A., Soder, K. J., & Stoner, A. M. K. (2019). Projected heat stress challenges and abatement opportunities for U.S. milk production. Plos One, 14(3), e0214665.
Heinicke, J., Ibscher, S., Belik, V., & Amon, T. (2019). Cow individual activity response to the accumulation of heat load duration. Journal of Thermal Biology, 82, 23-32.
Hempel, S., König, M., Menz, C., Janke, D., Amon, B., Banhazi, T. M., Estellés, F., & Amon, T. (2018). Uncertainty in the measurement of indoor temperature and humidity in naturally ventilated dairy buildings as influenced by measurement technique and data variability. Biosystems Engineering, 166, 58–75.
Hempel, S., Menz, C., Pinto, S., Galán, E., Janke, D., Estellés, F., Müschner-Siemens, T., Wang, X., Heinicke, J., Zhang, G., Amon, B., del Prado, A., & Amon, T. (2019). Heat stress risk in European dairy cattle husbandry under different climate change scenarios – uncertainties and potential impacts. Earth System Dynamics.
Hempel, S., Saha, C. K., Fiedler, M., Berg, W., Hansen, C., Amon, B., & Amon, T. (2016). Non-linear temperature dependency of ammonia and methane emissions from a naturally ventilated dairy barn. Biosystems Engineering, 145, 10–21.
Herbut, P., Angrecka, S., & Walczak, J. (2018). Environmental parameters to assessing of heat stress in dairy cattle – a review. International Journal of Biometeorology, 62(12), 2089–2097.
Hillman, P. E., Lee, C. N. & Willard, S. T. (2005). Thermoregulatory responses associated with lying and standing in heat-stressed dairy cows. Transactions of the ASAE, 48(2), 795–801.
Hoffmann, G., Herbut, P., Pinto, S., Heinicke, J., Kuhla, B., & Amon, T. (2019). Animal-related, non-invasive indicators for determining heat stress in dairy cows. Biosystems Engineering.
Ilin, R. M., & Vtoryi, S. V. (2017). Obosnovanie parametrov sistemyi monitoringa mikroklimata v jivotnovodcheskih pomescheniyah [Substantiation of parameters of climate monitoring system in livestock houses]. Tehnologii i Tehnicheskie Sredstva Mehanizirovannogo Proizvodstva Produktsii Rastenievodstva i Jivotnovodstva, 92, 212–217 (in Russian)
Ji, B., Banhazi, T., Ghahramani, A., Bowtell, L., Wang, C., & Li, B. (2019). Modelling of heat stress in a robotic dairy farm. Part 2: Identifying the specific thresholds with production factors. Biosystems Engineering.
Jovović, V., Pandurević, T., Važić, B., & Erbez, M. (2019). Microclimate parameters and ventilation inside the barns in the lowland region of Bosnia and Herzegovina. Journal of Animal Science of bih, 1(2), 14–18.
Karpenko, A. V., & Petrova, I. Yu. (2016). Modeli upravleniya mikroklimatom v pomeschenii [Models of climate control in the room]. Fundamentalnyie Issledovaniya, 7(2), 224–229 (in Russian)
Kuvshinov, Yu. Y., & Mansurov, R. Sh. (2011). Intellektualnaya sistema upravleniya protsessami formirovaniya mikroklimata pomescheniy [Intellectual system for control of local microclimate development processes]. АВОК, 8, 58–67 (in Russian)
Loshkarev, I. Yu., Aberyasev, A. Ya., & Loshkarev, V. I. (2018). Otsenka effektivnosti vnedreniya svetoaeratora v sistemu ventilyatsii korovnika [Evaluation of the effectiveness of introducing a light aerator into the barn ventilation system]. Aktualnyie Problemyi Energetiki APK, 104–105 (in Russian).
Mader, T. L., Davis, M. S., & Brown-Brandl, T. (2006). Environmental factors influencing heat stress in feedlot cattle. Journal of Animal Science, 84(3), 712–719.
Maniatis, S., Chronopoulos, K., Matsoukis, A., & Kamoutsis, A. (2017). Statistical models in estimating air temperature in a mountainous region of Greece. Current World Environment, 12(3), 544–549.
Martynova, E. N., & Yastrebova, E. A. (2013a). Zona razmescheniya jivotnyih v zdanii – faktor vliyaniya na molochnuyu produktivnost [Zone of placement of animals in the building – influence factor on the milk productivity]. Sovremennyie Problemyi Nauki i Obrazovaniya, 3, 421–427 (in Russian)
Martynova, E. N., & Yastrebova, E. A. (2013b). Otsenka parametrov mikroklimata jivotnovodcheskih pomescheniy v zavisimosti ot sezonov goda i vyiyavlenie kriticheskih tochek [Evaluation of microclimate livestock buildings, depending on the seasons and the identification of critical points]. Vestnik Ijevskoy Gosudarstvennoy Selskohozyaystvennoy Akademii, 2 (35),13–15 (in Russian)
Matsoukis, A., & Chronopoulos, K. (2017). Estimating inside air temperature of a glasshouse using statistical models. Current World Environment, 12(1), 1–5.
Milostivyj, R. V., Visokos, N. P., Priluckaja, E. V. & Tihonenko, V. A. (2016). Meroprijatija po stabilizacii mikroklimata v zhivotnovodcheskih pomeshhenijah v zharkih pogodnyh uslovijah [Measures to stabilize the microclimate in livestock rooms in hot weather]. Prioritetnye i innovacionnye tehnologii v zhivotnovodstve – osnova modernizacii agropromyshlennogo kompleksa Rossii. Stavropol’, 291–295 (in Russian).
Mondaca, M. D., & Choi, C. Y. (2016). A computational fluid dynamics model of a perforated polyethylene tube ventilation system for dairy operations. Transactions of the ASABE, 59(6), 1585–1594.
Monteny, G.-J., Bannink, A., & Chadwick, D. (2006). Greenhouse gas abatement strategies for animal husbandry. Agriculture, Ecosystems & Environment, 112(2-3), 163–170.
Morabito, E., Barkema, H. W., Pajor, E. A., Solano, L., Pellerin, D., & Orsel, K. (2017). Effects of changing freestall area on lameness, lying time, and leg injuries on dairy farms in Alberta, Canada. Journal of Dairy Science, 100(8), 6516–6526.
Müschner-Siemens, T., Hoffmann, G., Ammon, C., & Amon, T. (2020). Daily rumination time of lactating dairy cows under heat stress conditions. Journal of Thermal Biology, 88, 102484.
Mylostyvyi, R (2020). Neizolovani prymishchennia u spekotnyi period: yak zabezpechyty komfort korovam [Non-insulated rooms during the hot season: how to ensure cows comfort]. Tvarynnytstvo ta Veterynariia, 5, 34–37.
Mylostyvyi, R. (2019). Estimation of the heat stress probability in cows in an uninsulated cowshed during summer heat. Ukrainian Black Sea Region Agrarian Science, 103(3), 88–97.
Mylostyvyi, R. V., & Sejian, V. (2019). Welfare of dairy cattle in conditions of global climate change. Theoretical and Applied Veterinary Medicine, 7(1), 47–55.
Mylostyvyi, R. V., Chernenko, O. M., Izhboldina, O. O., Puhach, A. M., Orishchuk, O. S., & Khmeleva, O. V. (2019 b). Ecological substantiation of the normalization of the state of the air environment in the uninsulated barn in the hot period. Ukrainian Journal of Ecology, 9(3), 84–91.
Mylostyvyi, R., & Chernenko, O. (2019). Correlations between environmental factors and milk production of Holstein cows. Data, 4(3), 103.
Mylostyvyi, R., Chernenko, O., & Lisna, A. (2019a). Prediction of comfort for dairy cows, depending on the state of the environment and the type of barn. Development of Modern Science: The Experience of European Countries and Prospects for Ukraine.
Mylostyvyi, R., Sejian, V. & Hoffmann, G. (2020). Problems related to ensuring the cow comfort in uninsulated cowsheds during the hot season. Proceedings of the 1st International Scientific and Practical Conference AWCGCC, Dnipro
Nordlund, K. V., Strassburg, P., Bennett, T. B., Oetzel, G. R., & Cook, N. B. (2019). Thermodynamics of standing and lying behavior in lactating dairy cows in freestall and parlor holding pens during conditions of heat stress. Journal of Dairy Science, 102(7), 6495–6507.
Ortiz, X. A., Smith, J. F., Rojano, F., Choi, C. Y., Bruer, J., Steele, T., Schuring, N., Allen, J., & Collier, R. J. (2015). Evaluation of conductive cooling of lactating dairy cows under controlled environmental conditions. Journal of Dairy Science, 98(3), 1759–1771.
Pajumägi, A., Poikalainen, V., Veermäe, I., & Praks, J. (2008). Spatial distribution of air temperature as a measure of ventilation efficiency in large uninsulated cowshed. Building and Environment, 43(6), 1016–1022.
Patbandha, T. K., Sarma, M. P., Pata, B. A., Ravikala, K., Savaliya, B. D., & Kadam, S. J. (2018). Effect of microclimate on body temperature of black and white coloured breeds of goat. Indian Journal of Animal Production and Management, 34 (1–2), 80–85.
Pinto, S., Hoffmann, G., Ammon, C., Amon, B., Heuwieser, W., Halachmi, I., Banhazi, T., & Amon, T. (2019). Influence of barn climate, body postures and milk yield on the respiration rate of dairy cows. Annals of Animal Science, 19(2), 469–481.
Polsky, L., & von Keyserlingk, M. A. G. (2017). Invited review: Effects of heat stress on dairy cattle welfare. Journal of Dairy Science, 100(11), 8645–8657.
Popkov, N. A., Timoshenko, V. N., & Muzyika, A. A. (2018). Promyishlennaya tehnologiya proizvodstva moloka: monografiya [Industrial Milk Production Technology: Monograph]. Nauch.-prakticheskiy tsentr Nats. akad. nauk Belarusi po jivotnovodstvu. Jodino (in Russian)
Poteko, J., Zähner, M., & Schrade, S. (2019). Effects of housing system, floor type and temperature on ammonia and methane emissions from dairy farming: A meta-analysis. Biosystems Engineering, 182, 16–28.
Puhach, A. M., Vysokos, M. P., Mylostyvyi, R. V, Tiupina, N. V., & Kalinichenko, A. O. (2016). Pristrіj dlja zvolozhennja ta oholodzhennja povіtrja v tvarinnic’komu primіshhennі [Device for humidifying and cooling air in animal housing]. Ukraine Patent No. 108437 (in Ukrainian).
Rong, L., Liu, D., Pedersen, E. F., & Zhang, G. (2014). Effect of climate parameters on air exchange rate and ammonia and methane emissions from a hybrid ventilated dairy cow building. Energy and Buildings, 82, 632–643.
Saha, C. K., Ammon, C., Berg, W., Fiedler, M., Loebsin, C., Sanftleben, P., Brunsch, R., & Amon, T. (2014). Seasonal and diel variations of ammonia and methane emissions from a naturally ventilated dairy building and the associated factors influencing emissions. Science of The Total Environment, 468-469, 53–62.
Sahu, D., Mandal, D., Bhakat, C., Chatterjee, A., Mandal, A., & Mondal, M. (2018). Effects of roof ceiling and sand flooring on microclimate of shed and physiological indices of crossbred jersey cows. International Journal of Livestock Research, 8(4), 272–280.
Sanchis, E., Calvet, S., Prado, A. del, & Estellés, F. (2019). A meta-analysis of environmental factor effects on ammonia emissions from dairy cattle houses. Biosystems Engineering, 178, 176–183.
Schrade, S., Zeyer, K., Gygax, L., Emmenegger, L., Hartung, E., & Keck, M. (2012). Ammonia emissions and emission factors of naturally ventilated dairy housing with solid floors and an outdoor exercise area in Switzerland. Atmospheric Environment, 47, 183–194.
Schüller, L. K., Burfeind, O. & Heuwieser, W. (2013). Short communication: Comparison of ambient temperature, relative humidity, and temperature-humidity index between on-farm measurements and official meteorological data. Journal of Dairy Science, 96(12), 7731–7738.
Schüller, L.-K., Burfeind, O., & Heuwieser, W. (2016). Effect of short- and long-term heat stress on the conception risk of dairy cows under natural service and artificial insemination breeding programs. Journal of Dairy Science, 99(4), 2996–3002.
Sofronov, V. G., Danilova, N. I., Shamilov, N. M., & Kuznetsova, E. L. (2016). Vliyanie mikroklimata na organizm i molochnuyu produktivnost doynyih korov [Microclimate influence on the organism and milk producing ability of dairy cow]. Uchenyie Zapiski Kazanskoy Gosudarstvennoy Akademii Veterinarnoy Meditsinyi im. N. E. Baumana, 227(3), 82–85 (in Russian).
Sultan, M., Niaz, H., & Miyazaki, T. (2019). Investigation of desiccant and evaporative cooling systems for animal air-conditioning. Low-Temperature Technologies [Working Title].
Tao, S., Orellana, R. M., Weng, X., Marins, T. N., Dahl, G. E., & Bernard, J. K. (2018). Symposium review: The influences of heat stress on bovine mammary gland function. Journal of Dairy Science, 101(6), 5642–5654.
Teye, F., Hautala, M., Pastell, M., Praks, J., Veermae, I., Poikalainen, V., Pajumagi, A., Kivinen, T., & Ahokas, J. (2007). Microclimate in cowsheds in Finland and Estonia. ISAH-2007 Tartu, Estonia.
Timoshenko, V. N., Petrushko, I. S., Muzyika A. A., & Moskalev A. A. (2015). Osobennosti mikroklimata v naibolee rasprostranennyih tipah jivotnovodcheskih pomescheniy dlya soderjaniya korov doynogo stada v razlichnyie sezonyi goda [Features of the microclimate in the most common types of livestock buildings for keeping dairy herd cows in various seasons]. Naukoviy Vіsnik Natsіonalnogo Unіversitetu Bіoresursіv і Prirodokoristuvannya Ukrainy, 205, 388-398 (in Russian).
Timoshenko, V. N., Muzyika, A. A., Moskalёv, A. A., Kirikovich, S. A., Shmatko, N. N., Sheygratsova, L. N., Puchka M. P., & Timoshenko M. V. (2017). Vliyanie tehniko-tehnologicheskih resheniy na formirovanie sredyi obitaniya korov v usloviyah ferm i kompleksov [Effect of technical and technological solutions on cows’ habitat under conditions of farms and complexes]. Zootehnicheskaya Nauka Belarusi, 2, 216–223 (in Russian)
Trofimov, A. F., Timoshenko, V. N., Muzyika, A. A., Moskalev, A. A., Kovalevskiy, I. A., & Sheygratsova, L. N. (2014). Formirovanie mikroklimata v jivotnovodcheskih pomescheniyah razlichnogo tipa dlya soderjaniya laktiruyuschih korov [Microclimate formation in livestock buildings of various types for keeping lactating cows]. Uchenyie Zapiski Uchrejdeniya Obrazovaniya Vitebskaya ordena Znak Pocheta Gosudarstvennaya Akademiya Veterinarnoy Meditsinyi, 50 (2-1), 331–335 (in Russian).
Valančius, K., Vilutienė, T., & Rogoža, A. (2018). Analysis of the payback of primary energy and CO2 emissions in relation to the increase of thermal resistance of a building. Energy and Buildings, 179, 39–48.
Vasilenko, T., Milostiviy, R., Kalinichenko, A., & Milostivа, D. (2018b). Heat stress in dairy cows in the central part of Ukraine and its economic consequences. Social and economic aspects of sustainable development of regions: monograph. Publishing House WSZiA, Opole.
Vasilenko, Т. О., Milostiviy, R. V., Kalinichenko, О. О., Gutsulyak, G. S., & Sazykina, E. M. (2018a). Influence of high temperature on dairy productivity of Ukrainian Schwyz. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, 20(83), 97–101.
Voloshchuk, V. M., & Khotsenko, A. V. (2017). Dynamika temperatury povitria ta vnutrishnikh elementiv konstruktsii korivnyka karkasnoho typu za dii faktoriv zovnishnoho seredovyshcha [Dynamics of air temperature and internal structural elements of the barn frame type on effects of environmental factors]. Visnyk Sumskoho Natsionalnoho Ahrarnoho Universytetu, 5(2), 37–41 (in Ukrainian).
Vtoryi, V. F., Vtoryi ,S. V., & Ilin, R. M. (2018a) TSifrovyie tehnologii v upravlenii mikroklimatom korovnika [Digital technologies in the barn inside climate control]. Tekhnologii i Tekhnicheskie Sredstva Mekhanizirovannogo Proizvodstva Produkcii Rastenievodstva i Zhivotnovodstva, 4(97), 83–92 (in Russian).
Vtoryi, V. F., Vtoryi, S. V., & Ilyin, R. M. (2018b). Model temperaturno-vlajnostnogo rejima korovnika v zavisimosti ot parametrov vneshney sredyi [Model of in-barn temperature and humidity depending on outside environment parameters]. Tekhnologii i Tekhnicheskie Sredstva Mekhanizirovannogo Proizvodstva Produkcii Rastenievodstva i Zhivotnovodstva, 3(96), 203–209 (in Russian).
Vtoryi, V. F., Vtoryi, S. V., & Lantsova, E. O. (2016). Rezultatyi issledovaniya kontsentratsii SO2 v tipovom korovnike na 200 golov [The results of a study of the concentration of CO2 in a typical barn for 200 goals]. Molochnohozyaystvennyiy Vestnik, 4(24),72–79 (in Russian).
Wang, X., Bjerg, B. S., & Zhang, G. (2018a). Design-oriented modelling on cooling performance of the earth-air heat exchanger for livestock housing. Computers and Electronics in Agriculture, 152, 51–58.
Wang, X., Gao, H., Gebremedhin, K. G., Bjerg, B. S., Van Os, J., Tucker, C. B., & Zhang, G. (2018b). A predictive model of equivalent temperature index for dairy cattle (ETIC). Journal of Thermal Biology, 76, 165–170.
Wang, X., Zhang, G., & Choi, C. Y. (2018c). Evaluation of a precision air-supply system in naturally ventilated freestall dairy barns. Biosystems Engineering, 175, 1–15.
West, J. W. (2003). Effects of heat-stress on production in dairy cattle. Journal of Dairy Science, 86(6), 2131–2144.
Whay, H. R., & Shearer, J. K. (2017). The impact of lameness on welfare of the dairy cow. Veterinary Clinics of North America: Food Animal Practice, 33(2), 153–164.
Wisnieski, L., Norby, B., Pierce, S. J., Becker, T., Gandy, J. C., & Sordillo, L. M. (2019a). Cohort-level disease prediction by extrapolation of individual-level predictions in transition dairy cattle. Preventive Veterinary Medicine, 169, 104692.
Wisnieski, L., Norby, B., Pierce, S. J., Becker, T., Gandy, J. C., & Sordillo, L. M. (2019b). Predictive models for early lactation diseases in transition dairy cattle at dry-off. Preventive Veterinary Medicine, 163, 68–78.
Yano, A. A., Adiarto, A., & Widayati, W. (2018). Application of a tunnel-ventilated barn on the physiological responses, milk yield, and dry matter intake of dairy cows in tropical area during the wet season. Journal of Animal Behaviour and Biometeorology, 6(4), 97–101.
Yao, Shi, Zhao, & Ding. (2019). Effect of mixed-flow fans with a newly shaped diffuser on heat stress of dairy cows based on CFD. Energies, 12(22), 4315.
Yi, Q., Zhang, G., König, M., Janke, D., Hempel, S., & Amon, T. (2018). Investigation of discharge coefficient for wind-driven naturally ventilated dairy barns. Energy and Buildings, 165, 132–140.
Zaytseva, E. I. (2016). Analiz sovremennyih tendentsiy razvitiya mikroklimaticheskih ustanovok v jivotnovodcheskih pomescheniyah [Analysis of current trends in the development of microclimatic installations in livestock buildings]. Innovatsii v Selskom Hozyaystve, 4(19), 230-233 (in Russian).
Zimbelman, R., Rhoads, R., Rhoads, M., Duff, G., Baumgard, L., & Collier, R. (2009). A re-evaluation of the impact of temperature humidity index (THI) and black globe humidity index (BGHI) on milk production in high producing dairy cows. In Paper presented at the Proceedings of the southwest nutrition and management conference, Tempe. Arizona, February.

Abstract views: 427
PDF Downloads: 281
How to Cite
Mylostyvyi, R., Vysokos, M. P., Timoshenko, V., Muzyka, A., Vtoryi, V., Vtoryi, S., Chernenko, O., Izhboldina, O., Khmeleva, O., & Hoffmann, G. (2020). Features of the formation and monitoring of the microclimate in non-insulated barns: unresolved issues. Theoretical and Applied Veterinary Medicine, 8(2), 73-85. https://doi.org/10.32819/2020.82011

Most read articles by the same author(s)