Efficiency of application of inorganic and nanopreparations of selenium and probiotics for growing young quails

Keywords: quails; sodium selenite; nano-selenium; L. plantarum; body weight; feed conservation ratio; conservation


Modern industrial poultry farming occupies a leading position in the production of dietary foods, for which it is appropriate to use biologically active substances and probiotics. The study compared the effectiveness of compound feed with the addition of sodium selenite, bio-nano-selenium and L. plantarum in terms of body weight, weight gain, feed consumption and safety of experimental quail. The quails of the Pharaoh meat breed were kept in the vivarium of Bila Tserkva National Agrarian University and by the method of analogues were divided into 4 groups - control and three experimental ones. The duration of the study was 35 days. The results of the study indicate that the use in the quail’s diet of probiotics (L. plantarum) and selenium preparations (sodium selenite and bio-nano-selenium) leads to a predominance of poultry experimental groups in live weight over control analogs. It was found that the growth of bird’s live weight during the experiment differed depending on the use of the Selenium medication or probiotic, and the most intense effect on live weight of quails was the use of bio-nanоselenium in the diet of poultry (11.8% at the end of the experiment). Changes in absolute and average daily body weight gains of experimental birds have been clarified. The use of sodium selenite in the diet of quail caused a tendency for an increase in gains compared with control analogs at the beginning of the study and a downward trend during the fifth week of the study. It was found that the use of probiotics and bio-nano-selenium caused an increase in quail growth, which was more pronounced and reliable when feeding bio-nano-selenium. The obtained results show that probiotic and selenium preparations reduce feed consumption by 1 kg of weight gain, body weight increase by 3.05–11.8% and by 3.3–6.6% increase the safety of the experimental livestock with the best indicators in the group, receiving bio-nano-selenium.


Download data is not yet available.


Ahmadi, F., Khah, M. M., Javid, S., Zarneshan, S., Akradi, L., & Salehifar, P. (2013). The effect of dietary silver nanoparticles on per-formance, immune organs, and lipid serum of broiler chickens during starter period. International Journal of Biosciences (IJB), 3(5), 95–100.

Ahmadi, M., Ahmadian, A., & Seidavi, A. R. (2018). Effect of different levels of nano-selenium on performance, blood parameters, immunity and carcass characteristics of broiler chickens. Poultry Science Journal, 6(1), 99–108.

Alvarez, M. A. (2019). Yungas. In pharmacological properties of native plants from Argentina, 167–191. Springer, Cham.

Andrade, D. P., Ramos, C. L., Botrel, D. A., Borges, S. V., Schwan, R. F., & Ribeiro Dias, D. (2019). Stability of microencapsulated lactic acid bacteria under acidic and bile juice conditions. International Journal of Food Science & Technology, 54(7), 2355–2362.

Artiukhova, S. Y., & Antoniuk, Yu. O. (2014). Vlyianye lactobacillus plantarum na zheludochno-kyshechnyj trakt cheloveka y yspol-zovanye ykh pry proyzvodstve byoprodukta dlia herodyetycheskoho pytanyia. International Journal of Applied and Fundamental Research, 8(1), 139–140 (in Russian).

Bai, K., Hong, B., He, J., Hong, Z., & Tan, R. (2017). Preparation and antioxidant properties of selenium nanoparticles-loaded chitosan microspheres. International Journal of Nanomedicine, 12, 4527–4539.

Bіtyutskyy, V. S., Kharchyshyn, V. M., Tsekhmіstrenko, O. S., Tsekhmіstrenko, S. І., & Melnichenko, O. M. (2019a). Vplyv riznykh dzherel selenu ta probiotykiv na produktyvnist ta biokhimichni pokaznyky syrovatky krovi perepeliv. Bulletin of Bila Tserkva Na-tional Agrarian University. Problems of animal feeding in the conditions of high-intensive technologies of production and processing of livestock products: materials of the international scientific-practical conference, Bila Tserkva, 7–9 (in Ukrainian).

Bityutskyy, V. S., Tsekhmistrenko, О. S., Tsekhmistrenko, S. I., Spyvack, M. Y., & Shadura, U. M. (2017). Perspectives of cerium nanoparticles use in agriculture. The Animal Biology, 19(3), 9–17.

Bityutskyy, V., Tsekhmistrenko, S., Tsekhmistrenko, O., Melnychenko, O., & Kharchyshyn, V. (2019b). Effects of different dietary selenium sources including probiotics mixture on growth performance, feed utilization and serum biochemical profile of quails. Modern Development Paths of Agricultural Production, 623–632.

Boostani, A., Sadeghi, A. A., Mousavi, S. N., Chamani, M., & Kashan, N. (2015). Effects of organic, inorganic, and nano-Se on growth performance, antioxidant capacity, cellular and humoral immune responses in broiler chickens exposed to oxidative stress. Livestock Science, 178, 330–336.

Chauhan, R., Awasthi, S., Srivastava, S., Dwivedi, S., Pilon-Smits, E. A. H., Dhankher, O. P., & Tripathi, R. D. (2019). Understanding selenium metabolism in plants and its role as a beneficial element. Critical Reviews in Environmental Science and Technology, 49(21), 1937–1958.

El-Deep, M. H., Ijiri, D., Ebeid, T. A., & Ohtsuka, A. (2016). Effects of dietary nano-selenium supplementation on growth performance, antioxidative status, and immunity in broiler chickens under thermoneutral and high ambient temperature conditions. The Journal of Poultry Science, 53(4), 274–283.

Gharaei-Fa, E., & Eslamifar, M. (2011). Isolation and Applications of One Strain of Lactobacillus paraplantarum from Tea Leaves (Ca-mellia sinensis). American Journal of Food Technology, 6(5), 429–434.

Gupta, T. T., & Ayan, H. (2019). Application of Non-Thermal Plasma on Biofilm: A Review. Applied Sciences, 9(17), 3548.

Jang, H. J., Yu, H.-S., Lee, N.-K., & Paik, H.-D. (2020). Immune-stimulating effect of lactobacillus plantarum ln1 isolated from the traditional korean fermented food, kimchi. Journal of Microbiology and Biotechnology, 30(6), 926–929.

Kleerebezem, M., Boekhorst, J., van Kranenburg, R., Molenaar, D., Kuipers, O. P., Leer, R., Tarchini, R., Peters, S. A., Sandbrink, H.M., Fiers, M. W. E. J., Stiekema, W., Lankhorst, R. M. K., Bron, P. A., Hoffer, S. M., Groot, M. N. N., Kerkhoven, R., de Vries, M., Ursing, B., de Vos, W. M., Siezen, R. J., & Stiekema, W. (2003). Complete genome sequence of Lactobacillus plantarum WCFS1. Proceedings of the National Academy of Sciences, 100(4), 1990–1995.

Khalak, V., Horchanok, A., Kuzmenko, O., Lytvyshchenko, L., Lieshchova, M., Кalinichenko, A., Liskovich, V., Zagoruy, L. (2020). Protein metabolism, physicochemical properties and chemical composition of muscle tissue in Large White weaners. Ukrainian Jour-nal of Ecology, 10(4), 127–131.
Mao, S.-Y., & Lien, T.-F. (2017). Effects of nanosized zinc oxide and γ-polyglutamic acid on eggshell quality and serum parameters of aged laying hens. Archives of Animal Nutrition, 71(5), 373–383.

March, C. J., Mosley, B., Larsen, A., Cerretti, D. P., Braedt, G., Price, V., Gillis, S., Henney, C. S., Kronheim, S. R., Grabstein,K., Conlon, P. J., Hopp, T. P., & Cosman, D. (1985). Cloning, sequence and expression of two distinct human interleukin-1 complementary DNAs. Nature, 315(6021), 641–647.

Mehdi, Y., Hornick, J. L., Istasse, L., & Dufrasne, I. (2013). Selenium in the environment, metabolism and involvement in body functions. Molecules, 18(3), 3292–3311.

Niedzielin, K., Kordecki, H., & Birkenfeld, B. (2001). A controlled, double-blind, randomized study on the efficacy of Lactobacillus plantarum 299V in patients with irritable bowel syndrome. European Journal of Gastroenterology & Hepatology, 13(10), 1143–1147.

Plohinskij, N. A. (1969). Rukovodstvo po biometrii dlya zootekhnikov. «Kolos» publishing house (in Russian).

Qiao, L., Dou, X., Yan, S., Zhang, B., & Xu, C. (2020). Biogenic selenium nanoparticles synthesized by Lactobacillus casei ATCC 393 alleviate diquat-induced intestinal barrier dysfunction in C57BL/6 mice through their antioxidant activity. Food & Function, 11(4), 3020–3031.

Ryu, J. Y., Kang, H. R., & Cho, S. K. (2019). Changes over the fermentation period in phenolic compounds and antioxidant and anticancer activities of blueberries fermented by Lactobacillus plantarum. Journal of Food Science, 84(8), 2347–2356.

Saadat, Y. R., Khosroushahi, A. Y., & Gargari, B. P. (2019). A comprehensive review of anticancer, immunomodulatory and health beneficial effects of the lactic acid bacteria exopolysaccharides. Carbohydrate Polymers, 217, 79–89.

Saleh, A. A. (2014). Effect of dietary mixture of Aspergillus probiotic and selenium nano-particles on growth, nutrient digestibilities, selected blood parameters and muscle fatty acid profile in broiler chickens. Animal Science Papers And Reports, 32, 65–79.

Senthil Kumaran, C. K., Sugapriya, S., Manivannan, N., & Chandar Shekar, B. (2015). Effect on the growth performance of broiler chickens by selenium nanoparticles supplementation. Nano Vision, 5(4–6), 161–168.

Shah, A. A., Qian, C., Wu, J., Liu, Z., Khan, S., Tao, Z., Zhang, X., Khan, I. U., & Zhong, X. (2020). Effects of natamycin and Lactobacillus plantarum on the chemical composition, microbial community, and aerobic stability of Hybrid pennisetum at different temperatures. RSC Advances, 10(15), 8692–8702.

Staicu, L. C., & Barton, L. L. (2017). Bacterial metabolism of selenium – for survival or profit. Bioremediation of Selenium Contaminated Wastewater, 1–31.

Tsekhmіstrenko, O. S. (2008). Vpliv selenіtu natrіyu na pokazniki peroksidnogo okisnennya lіpіdіv u nirkah perepelіv za kadmіyevogo navantazhennya. Bulletin of Bila Tserkva National Agrarian University, 53, 52–56 (in Ukrainian).

Tsekhmistrenko, О., Bityutskyy, V., Tsekhmistrenko, S., Melnychenko, O., Tymoshok, N., & Spivak, M. (2019). Use of nanoparticles of metals and non-metals in poultry farming. Tehnologìâ Virobnictva ì Pererobki Produktìv Tvarinnictva, 2(150), 113–130.

Tsekhmistrenko, O. S., Bityutskyy, V. S., Tsekhmistrenko, S. I., Kharchishin, V. M., Melnichenko, O. M., Rozputnyy, O. I., Malina, V. V., Prysiazhniuk, N. M., Melnichenko, Y. О., Vered, P.I., Shulko, O. P., & Onyshchenko, L. S. (2020a). Nanotechnologies and environment: A review of pros and cons. Ukrainian Journal of Ecology, 10(3), 162–172.

Tsekhmistrenko, S. I., Bityutskyy, V. S., Tsekhmistrenko, О. S., Melnichenko, О. М., Kharchyshyn, V. M., Tymoshok, N. O., Ponomarenko, N. V., Polishchuk, S. A., Rol, N. V., Fedorchenko, M. M., Melnichenko, Yu. О., Merzlova, H. V., Shulko, O. P., & Demchenko, A. A. (2020b). Effects of selenium compounds and toxicant action on oxidative biomarkers in quails. Ukrainian Journal of Ecology, 10(2), 232–239.

Tsekhmistrenko, S. I., Bityutskyy, V. S., Tsekhmistrenko, O. S., Horalskyi, L. P., Tymoshok, N. O., & Spivak, M. Y. (2020c). Bacterial synthesis of nanoparticles: A green approach. Biosystems Diversity, 28(1), 9–17.

Tsekhmistrenko, S. I., Bityutskyy, V. S., Tsekhmistrenko, O. S., Polishchuk, V. M., Polishchuk, S. A., Ponomarenko, N.V., Melnychenko, Y. O., & Spivak, M. Y. (2018). Enzyme-like activity of nanomaterials. Regulatory Mechanisms in Biosystems, 9(3), 469–476.

Tymoshok, N. O., Kharchuk, M. S., Kaplunenko, V. G., Bityutskyy, V. S., Tsekhmistrenko, S. I., Tsekhmistrenko, O. S., Spivak, M. Y., & Melnichenko, О. М. (2019). Evaluation of effects of selenium nanoparticles on Bacillus subtilis. Regulatory Mechanisms in Biosystems, 10(4), 544–552.

Vaziri, A. S., Alemzadeh, I., & Vossoughi, M. (2019). Survivability and oxidative stability of co-microencapsulated L. plantarum PTCC 1058 and DHA as a juice carrier. Food Bioscience, 32, 100460.

Virkutyte, J., & Varma, R. S. (2011). Green synthesis of metal nanoparticles: biodegradable polymers and enzymes in stabilization and surface functionalization. Chemical Science, 2(5), 837–846.

Wrobel, J. K., Power, R., & Toborek, M. (2016). Biological activity of selenium: revisited. IUBMB life, 68(2), 97–105.

Wu, C.-Y., Wong, C.-S., Chung, C.-J., Wu, M.-Y., Huang, Y.-L., Ao, P.-L., Lin, Y.-F., Lin, Y.-C., Shiue, H.-S., Su, C.-T., Chen, H. H., & Hsueh, Y.-M. (2019). The association between plasma selenium and chronic kidney disease related to lead, cadmium and arsenic exposure in a Taiwanese population. Journal of Hazardous Materials, 375, 224–232.

Xiao, X., Song, D., Cheng, Y., Hu, Y., Wang, F., Lu, Z., & Wang, Y. (2018). Biogenic nanoselenium particles activate Nrf2-ARE pathway by phosphorylating p38, ERK1/2, and AKT on IPEC-J2 cells. Journal of Cellular Physiology, 234(7), 11227–11234.

Xie, S., Zhao, S., Jiang, L., Lu, L., Yang, Q., & Yu, Q. (2019). Lactobacillus reuteri stimulates intestinal epithelial proliferation and in-duces differentiation into goblet cells in young chickens. Journal of Agricultural and Food Chemistry, 67(49), 13758–13766.

Xu, C., Guo, Y., Qiao, L., Ma, L., Cheng, Y., & Roman, A. (2018). Biogenic synthesis of novel functionalized selenium nanoparticles by Lactobacillus casei ATCC 393 and its protective effects on intestinal barrier dysfunction caused by enterotoxigenic Escherichia coli K88. Frontiers in Microbiology, 9.

Yang, S. J., Lee, J. E., Lim, S. M., Kim, Y. J., Lee, N. K., & Paik, H. D. (2019). Antioxidant and immune-enhancing effects of probiotic Lactobacillus plantarum 200655 isolated from kimchi. Food science and biotechnology, 28(2), 491–499.

Zoidis, E., Seremelis, I., Kontopoulos, N., & Danezis, G. P. (2018). Selenium-dependent antioxidant enzymes: Actions and properties of selenoproteins. Antioxidants, 7(5), 66.

Abstract views: 165
PDF Downloads: 125
How to Cite
Tsekhmistrenko, O. S., Bityutsky, V. S., Tsekhmistrenko, S. I., Kharchyshyn, V. M., Tymoshok, N. O., & Spivak, M. Y. (2020). Efficiency of application of inorganic and nanopreparations of selenium and probiotics for growing young quails. Theoretical and Applied Veterinary Medicine, 8(3), 206-212. https://doi.org/10.32819/2020.83030