The effectiveness of the use of various techniques of amniotic membrane (AM) transplantation in the corneal degenerative processes

Keywords: experimental keratitis; Chinchilla rabbits; mesenchymal stem cells (MSC); amniotic membrane transplantation (AMT); cornea


The amniotic membrane – the innermost of the three membranes, it develops from the fetal ectoderm, it is transparent, avascular and consists of an epithelial cell layer located on the basement membrane and connective tissue stroma. The application efficiency of the amniotic membrane transplantation technique in rabbits with experimental bacterial keratitis has been investigated. The animals were simulated with moderate bacterial keratitis (with preliminary exposure to long-wavelength mercury lamp beams) by the administration to each eye of the Staphylococcus aureus pathogenic strain. On the 14th day, the amniotic membrane was transplanted using two methods: by biological covering with episcleral fixation using simple interrupted sutures and layer-by-layer transplantation with fixation of the membrane within the damage of the cornea with simple interrupted sutures. The degree of the inflammatory process was assessed according to the author’s point scale, which included eight signs. On the 7th, 14th, and 30th days, the experimental animals were euthanized and microscopic examination of the cornea was performed. It was found that on the 7th day of application, complete epithelization of the corneal surface occurred, and on the 30th day, differentiation of its cells into layers. When using the layer-by-layer technique of amniotic membrane transplantation with using simple interrupted sutures, a more pronounced inflammatory reaction was observed in comparison with the biological covering technique. During all observation periods, most experimental animals did not show clinical and morphological signs of inflammatory infiltration. The obtained effect of both methods of amniotic membrane transplantation indicates the effectiveness of using this biological material as the main or supportive in the treatment of severe eye pathologies.


Download data is not yet available.


Choi, T. H., & Tseng, S. C. G. (2001). In Vivo and In Vitro Demonstration of Epithelial Cell-induced Myofibroblast Differentiation of Keratocytes and an Inhibitory Effect by Amniotic Membrane. Cornea, 20(2), 197–204.

Dua, H. S., Gomes, J. A. ., King, A. J., & Maharajan, V. S. (2004). The amniotic membrane in ophthalmology. Survey of Ophthalmology, 49(1), 51–77.

Dua, H. S. (1998). The conjunctiva in corneal epithelial wound healing. British Journal of Ophthalmology, 82(12), 1407–1411.

Dua, H. S., & Azuara-Blanco, A. (1999). Allo-limbal transplantation in patients with limbal stem cell deficiency. British Journal of Ophthalmology, 83(4), 414–419.

Dua, H. S., & Azuara-Blanco, A. (2000). Limbal stem cells of the corneal epithelium. Survey of Ophthalmology, 44(5), 415–425.

Fukuda, K., Chikama, T., Nakamura, M., & Nishida, T. (1999). Differential distribution of subchains of the basement membrane components type IV collagen and laminin among the amniotic membrane, cornea, and conjunctiva. Cornea, 18(1), 73–79.

Gaafar, T. M., El Hawary, R., Osman, A., Attia, W., Hamza, H., Brockmeier, K., & Osman, O. M. (2014). Comparative characteristics of amniotic membrane, endometrium and ovarian derived mesenchymal stem cells: A role for amniotic membrane in stem cell therapy. Middle East Fertility Society Journal, 19(3), 156–170.

Hao, Y., Ma, D. H.-K., Hwang, D. G., Kim, W.-S., & Zhang, F. (2000). Identification of antiangiogenic and antiinflammatory proteins in human amniotic membrane. Cornea, 19(3), 348–352.

Horalskiy, L. P., Khomych, V. T., & Kononsky, A. I. (2019). Histological techniques and morphological methods in normal and pathological conditions. Zhitomir, Polissia (in Ukrainian).

Hosseini, H., & Nejabat, M. (2007). A potential therapeutic strategy for inhibition of corneal neovascularization with new anti-VEGF agents. Medical Hypotheses, 68(4), 799–801.

Kasparov, A. A., & Trufanov, C. B. (2003). Ispol’zovanie konservirovannoj amnioticheskoj membrany dlja rekonstrukcii poverhnosti perednego otrezka glaza [Use of preserved amniotic membrane for reconstruction of the surface of the anterior segment of the eye]. Vestnik Oftal’mologii, 3, 45–47 (in Russian).

Kim, B. S., Chun, S. Y., Lee, J. K., Lim, H. J., Bae, J., Chung, H.-Y., Atala, A., Soker, S., Yoo, J. J., & Kwon, T. G. (2012). Human amniotic fluid stem cell injection therapy for urethral sphincter regeneration in an animal model. BMC Medicine, 10(1).

Kim, J. C., & Tseng, S. C. G. (1995). Transplantation of preserved human amniotic membrane for surface reconstruction in severely damaged rabbit corneas. Cornea, 14(5), 473–484.

Lee, S.-H., & Tseng, S. C. G. (1997). Amniotic membrane transplantation for persistent epithelial defects with ulceration. American Journal of Ophthalmology, 123(3), 303–312.

Li, W., Hayashida, Y., Chen, Y.-T., & Tseng, S. C. (2007). Niche regulation of corneal epithelial stem cells at the limbus. Cell Research, 17(1), 26–36.

Ma, D., Chen, J., Zhang, F., Lin, K., Yao, J., & Yu, J. (2006). Regulation of corneal angiogenesis in limbal stem cell deficiency. Progress in Retinal and Eye Research, 25(6), 563–590.

Mazurkevych, A. I., Kovpak, V. V., & Danilov, V. B. (2014). Klitynni tekhnolohii u veterynarnii medytsyni. Navchalnyi posibnyk. Kyiv, Komprynt (in Ukrainian).

Moraghebi, R., Kirkeby, A., Chaves, P., Rönn, R. E., Sitnicka, E., Parmar, M., Larsson, M., Herbst, A., & Woods, N.-B. (2017). Term amniotic fluid: an unexploited reserve of mesenchymal stromal cells for reprogramming and potential cell therapy applications. Stem Cell Research & Therapy, 8(1).

Muiños-López, E., Hermida-Gómez, T., Fuentes-Boquete, I., de Toro-Santos, J., Blanco, F. J., & Díaz-Prado, S. M. (2017). Human amniotic mesenchymal stromal cells as favorable source for cartilage repair. Tissue Engineering Part A, 23(17-18), 901–912.

Schroeder, A., Theiss, C., Steuhl, K.-P., Meller, K., & Meller, D. (2007). Effects of the human amniotic membrane on axonal outgrowth of dorsal root ganglia neurons in culture. Current Eye Research, 32(9), 731–738.

Schlötzer-Schrehardt, U., & Kruse, F. E. (2005). Identification and characterization of limbal stem cells. Experimental Eye Research, 81(3), 247–264.

Seitz, B. (2006). Histopathology and ultrastructure of human corneas after amniotic membrane transplantation. Archives of Ophthalmology, 124(10), 1487.

Seitz, B., Das, S., Sauer, R., Mena, D., & Hofmann-Rummelt, C. (2008). Amniotic membrane transplantation for persistent corneal epithelial defects in eyes after penetrating keratoplasty. Eye, 23(4), 840–848.

Shimazaki, J., Shinozaki, N., & Tsubota, K. (1998). Transplantation of amniotic membrane and limbal autograft for patients with recurrent pterygium associated with symblepharon. British Journal of Ophthalmology, 82(3), 235–240.

Shortt, A. J., Secker, G. A., Notara, M. D., Limb, G. A., Khaw, P. T., Tuft, S. J., & Daniels, J. T. (2007). Transplantation of ex vivo cultured limbal epithelial stem cells: a review of techniques and clinical results. Survey of Ophthalmology, 52(5), 483–502.

Sippel, K. C., Ma, J. J. K., & Foster, C. S. (2001). Amniotic membrane surgery. Current Opinion in Ophthalmology, 12(4), 269–281.

Solomon, A., Meller, D., Prabhasawat, P., John, T., Espana, E. M., Steuhl, K.-P., & Tseng, S. C. (2002). Amniotic membrane grafts for nontraumatic corneal perforations, descemetoceles, and deep ulcers. Ophthalmology, 109(4), 694–703.

Sorsby, A., & Symons, H. M. (1946). Amniotic membrane grafts in caustic burns of the eye: (Burns of the second degree). British Journal of Ophthalmology, 30(6), 337–345.

Thatte, S. (2011). Amniotic membrane transplantation: An option for ocular surface disorders. Oman Journal of Ophthalmology, 4(2), 67.

Tsuji, H., Miyoshi, S., Ikegami, Y., Hida, N., Asada, H., Togashi, I., Suzuki, J., Satake, M., Nakamizo, H., Tanaka, M., Mori, T., Segawa, K., Nishiyama, N., Inoue, J., Makino, H., Miyado, K., Ogawa, S., Yoshimura, Y., & Umezawa, A. (2010). Xenografted human amniotic membrane–derived mesenchymal stem cells are immunologically tolerated and transdifferentiated into cardiomyocytes. Circulation Research, 106(10), 1613–1623.

Zhang, D., Jiang, M., & Miao, D. (2011). Transplanted human amniotic membrane-derived mesenchymal stem cells ameliorate carbon tetrachloride-induced liver cirrhosis in mouse. PLoS ONE, 6(2), e16789.

Zhang, L., Coulson-Thomas, V. J., Ferreira, T. G., & Kao, W. W. Y. (2015). Mesenchymal stem cells for treating ocular surface diseases. BMC Ophthalmology, 15(S1).

Abstract views: 140
PDF Downloads: 77
How to Cite
Shupyk, O. V., Mazurkevich, A. Y., Bokotko, R. R., & Dudus, T. V. (2020). The effectiveness of the use of various techniques of amniotic membrane (AM) transplantation in the corneal degenerative processes. Theoretical and Applied Veterinary Medicine, 8(3), 219-225.