Mechanisms of antimicrobial resistance development in bacteria

Keywords: antibiotics; microorganisms; resistance genes; veterinary medicine


Antimicrobial resistance poses a significant risk to animal health by reducing the effectiveness of the treatment and prevention of many infections caused by bacteria. Antibiotic resistance threatens human health by transmitting resistant strains of microorganisms or resistance genes from animals to humans through the food chain. Life-threatening infections that were previously manageable can become incurable through antimicrobial resistance. Antimicrobial resistance can be divided into two main types: natural and acquired. Natural bacterial resistance is associated with the absence or inaccessibility of target cites for the action of certain antimicrobial agents. The acquired resistance is specific and associated with the acquisition of extraneous resistance genes or mutational modification of chromosomal target genes. The resistance of bacteria to antimicrobial drugs varies depending on the antimicrobial agent, species or genus of bacteria, and the mechanism of resistance. Resistance to the same antimicrobial agent can be mediated by different resistance mechanisms. In some cases, the same resistance gene or mechanism are related to a wide variety of bacteria, whereas in other cases, resistance genes or mechanisms are restricted to certain bacterial species or genera. Bacterial resistance to different classes of antibiotics with common mechanisms often leads to the multidrug resistance. The data presented in this review focuses exclusively on the resistance genes and mechanisms found in bacteria of animal origin and on antimicrobials used in the veterinary medicine. For better coverage of the topic, information on the mechanisms of resistance is presented separately for each class of antimicrobial agents.


Download data is not yet available.


AbuOun, M., Stubberfield, E. J., Duggett, N. A., Kirchner, M., Dormer, L., Nunez-Garcia, J., Randall, L. P., Lemma, F., Crook, D. W., Teale, C., Smith, R. P., & Anjum, M. F. (2017). mcr-1 and mcr-2 variant genes identified in Moraxella species isolated from pigs in Great Britain from 2014 to 2015. The Journal of Antimicrobial Chemotherapy, 72(10), 2745–2749.

Alekshun, M. N., & Levy, S. B. (1999). The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends in Microbiology, 7, 410–413.

Alekshun, M. N., & Levy, S. B. (2000). Bacterial drug resistance: response to survival threats. In Storz, G., Hengge-Aronis, R. (ed). Bacterial stress responses. ASM Press, Washington, DC, 323–366.

Alton, N. K., & Vapnek, D. (1979). Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature, 282, 864–869.

Bager, F., & Helmuth, R. (2001). Epidemiology of resistance to quinolones in Salmonella. Veterinary Research, 32(3/4), 285–290.

Baron, S., Hadjadj, L., Rolain, J. M., & Olaitan, A. O. (2016). Molecular mechanisms of polymyxin resistance: knowns and unknowns. International Journal of Antimicrobial Agents, 48 (6), 583–591.

Baucheron, S. (2004). Role of TolC and parC mutation in high-level fluoroquinolone resistance in Salmonella enterica serotype Typhimurium DT204. Journal of Antimicrobial Chemotherapy, 53(4), 657–659.

Baucheron, S., Imberechts, H., Chaslus-Dancla, E., & Cloeckaert, A. (2002). The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar Typhimurium Phage type DT204. Microbial Drug Resistance, 8(4), 281–289.

Borowiak, M., Fischer, J., Hammerl, J. A., Hendriksen, R. S., Szabo. I., & Malorny, B. (2017). Identification of a novel transposon-associated phosphoethanolamine transferase gene, mcr-5, conferring colistin resistance in d-tartrate fermenting Salmonella enterica subsp. enterica serovar Paratyphi B. Journal of Antimicrobial Chemotherapy, 72 (12), 3317–3324.

Brenner, D. G., & Shaw, W. V. (1985). The use of synthetic oligonucleotides with universal templates for rapid DNA sequencing: results with staphylococcal replicon pC221. The EMBO Journal, 4(2), 561–568.

Eliopoulos, G. M., & Bush, K. (2001). New lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clinical Infectious Diseases, 32(7), 1085–1089.

Bush, K., Jacoby, G. A., & Medeiros, A. A. (1995). A functional classification scheme for beta-lactamases and its correlation with molecular structure. Antimicrobial Agents and Chemotherapy, 39(6), 1211–1233.

Butaye, P., Devriese, L. A., & Haesebrouck, F. (2003). Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clinical Microbiology Reviews, 16(2), 175–188.

Campos, M. A., Vargas, M. A., Regueiro, V., Llompart, C. M., Albertí, S., & Bengoechea, J. A. (2004). Capsule polysaccharide mediates bacterial resistance to antimicrobial peptides. Infection and Immunity, 72(12), 7107–7114.

Carattoli, A., Villa, L., Feudi, C., Curcio, L., Orsini, S., Luppi, A., Pezzotti, G., & Magistrali, C. F. (2017). Novel plasmid-mediated colistin resistance mcr-4 gene in Salmonella and Escherichia coli, Italy 2013, Spain and Belgium, 2015 to 2016. Eurosurveillance, 22(31).

Casas, C., Anderson, E. C., Ojo, K. K., Keith, I., Whelan, D., Rainnie, D., & Roberts, M. C. (2005). Characterization of pRAS1-like plasmids from atypical North American psychrophilic Aeromonas salmonicida. FEMS Microbiology Letters, 242 (1), 59–63.

Charpentier, E., & Courvalin, P. (1997). Emergence of the trimethoprim resistance gene dfrD in Listeria monocytogenes BM4293. Antimicrobial Agents and Chemotherapy, 41(5), 1134–1136.

Charrel, R. N., Pagès, J. M., De Micco, P., & Mallea, M. (1996). Prevalence of outer membrane porin alteration in beta-lactam-antibiotic-resistant Enterobacter aerogenes. Antimicrobial Agents and Chemotherapy, 40(12), 2854–2858.

Chopra, I., & Roberts, M. (2001). Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiology and Molecular Biology Reviews, 65(2), 232–260.

Cloeckaert, A., & Chaslus-Dancla, E. (2001). Mechanisms of quinolone resistance in Salmonella. Veterinary Research, 32 (3-4), 291–300.

Cohen, K. A., Bishai, W. R., & Pym, A. S. (2014). Molecular basis of drug resistance in Mycobacterium tuberculosis. Microbiology Spectrum, 2(3), 1–16.

Cohen, S. P., McMurry L. M., & Levy S. B. (1988). marA locus causes decreased expression of OmpF porin in multipleantibiotic-resistant (Mar) mutants of Escherichia coli. Journal of Bacteriology, 170(12), 5416–5422.

Dale, G. E., Broger, C., D’Arcy, A., Hartman, P. G., DeHoogt, R., Jolidon, S., Kompis, I., Labhardt, A. M., Langen, H., Locher, H., Page, M. G., Stuber D., Then, R. L., Wipf, B., & Oefner, C. (1997). A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. Journal of Molecular Biology, 266 (1), 23–30.

Dale, G. E., Langen, H., Page, M. G., Then, R. L., & Stüber, D. (1995). Cloning and characterization of a novel, plasmidencoded trimethoprim-resistant dihydrofolate reductase from Staphylococcus haemolyticus MUR313. Antimicrobial Agents and Chemotherapy, 39, 1920–1924.
Datta, N., & Hedges R. W. (1972). Trimethoprim resistance conferred by W plasmids in Enterobacteriaceae. Journal of General Microbiology, 72, 349–355.

Davies, J., & Wright G. D. (1997). Bacterial resistance to aminoglycoside antibiotics. Trends in Microbiology, 5(6), 234–240.

DePaola, A., & Roberts, M. C. (1995). Class D and E tetracycline resistance determinants in Gram-negative catfish pond bacteria. Molecular and Cellular Probes, 9(5), 311–313.

Drlica, K., & Zhao, X. (1997). DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiology and Molecular Biology Reviews : MMBR, 61(3), 377–392.

Edgar, R., & Bibi E. (1997). MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. Journal of Bacteriology, 179(7). 2274–2280.

Eichhorn, I., Feudi, C., Wang, Y., Kaspar, H., Febler, A. T., Lubke-Becker, A., Michael, G. B., Shen, J., & Schwarz, S. (2018). Identification of novel variants of the colistin resistance gene mcr-3 in Aeromonas spp. from the national resistance monitoring program GERM-Vet and from diagnostic submissions. Journal of Antimicrobial Chemotherapy, 73(5), 1217–1221.

Elwell, L. P., & Fling, M. E. (1989). Resistance to trimethoprim. Microbial Resistance to Drugs, 249–290.

Endtz, H. P, Ruijs, G. J., van Klingeren, B., Jansen, W. H., van der Reyden, T., & Mouton, R. P. (1991). Quinolone resistance in campylobacter isolated from man and poultry following the introduction of fluoroquinolones in veterinary medicine. Journal of Antimicrobial Chemotherapy, 27(2), 199–208.

Ettayebi, M., Prasad, S. M., & Morgan E. A. (1985). Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli. Journal of Bacteriology, 162(2), 551–557.

Everett, M. J., Jin, Y. F., Ricci, V., & Piddock L. J. V. (1996). Contributions of individual mechanisms to fluoroquinolone resistance in 36 Escherichia coli strains isolated from humans and animals. Antimicrobial Agents and Chemotherapy, 40(10), 2380–238.

Everett, M. J., & Piddock, L. J. V. (1998). Mechanisms of resistance to fluoroquinolones. Handbook of Experimental Pharmacology, 259–296.

Fiebelkorn, K. R., Crawford S. A., & Jorgensen J. H. (2005). Mutations in folP associated with elevated sulfonamide MICs for Neisseria meningitidis clinical isolates from five continents. Antimicrobial Agents and Chemotherapy, 49(2), 536– 540.

Flannagan, S. E., Zitzow, L. A., Su, Y. A., & Clewell, D. B. (1994). Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid, 32(2), 350–354.

Forsberg, K. J., Patel, S., Wencewicz, T. A., & Dantas, G. (2015). The tetracycline destructases: A novel family of tetracycline-inactivating enzymes. Chemistry & Biology, 22(7), 888–897.

Fyfe, C., Grossman, T. H., Kerstein, K., & Sutcliffe, J. (2016). Resistance to macrolide antibiotics in public health pathogens. Cold Spring Harbor Perspectives in Medicine, 6(10), a025395.

Galimand, M., Courvalin, P., &Lambert T. (2003). Plasmidmediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrobial Agents and Chemotherapy, 47(8), 2565–2571.

Georgopapadakou, N. H. (1993). Penicillin-binding proteins and bacterial resistance to beta-lactams. Antimicrobial Agents and Chemotherapy, 37(10), 2045–2053.

Grave, K., Torren-Edo, J., Muller, A., Greko, C., Moulin, G., Mackay, D., Fuchs, K., Laurier, L., Iliev, D., Pokludova, L., Genakritis, M., Jacobsen, E., Kurvits, K., Kivilahti-Mantyla, K., Wallmann, J., Kovacs, J., Lenharthsson, J. M., Beechinor, J. G., Perrella, A., Micˇule, G., Zymantaite, U., Meijering, A., Prokopiak, D., Ponte, M. H., Svetlin, A., Hederova, J., Madero, C. M., Girma, K., Eckford, S., & Mackay, D. (2014). Variations in the sales and sales patterns of veterinary antimicrobial agents in 25 European countries. Journal of Antimicrobial Chemotherapy, 69(8), 2284–2291.

De Groot, R., Sluijter, M., de Bruyn, A., Campos, J., Goessens, W. H., Smith, A. L., & Hermans, P. W. (1996). Genetic characterization of trimethoprim resistance in Haemophilus influenzae. Antimicrobial Agents and Chemotherapy, 40(9), 2131–2136.

Guan, X., Xue, X., Liu, Y., Wang, J., Wang, Y., Wang, J., Wang, K., Jiang, H., Zhang, L., Yang, B., Wang, N., & Pan, L. (2013). Plasmid-mediated quinolone resistance: current knowledge and future perspectives. Journal of International Medical Research, 41(1), 20–30.

Hidalgo, A., Carvajal, A., Vester, B., Pringle, M., Naharro, G., & Rubio, P. (2011). Trends towards lower antimicrobial susceptibility and characterization of acquired resistance among clinical isolates of Brachyspira hyodysenteriae in Spain. Antimicrobial Agents and Chemotherapy, 55(7), 3330–3337.

Hooper, D. C. (1999). Mechanisms of fluoroquinolone resistance. Drug Resistance Updates, 2(1), 38–55.

Hooper, D. C., Wolfson, J. S., Bozza, M. A., & Ng E. Y. (1992). Genetics and regulation of outer membrane protein expression by quinolone resistance loci nfxB, nfxC, and cfxB. Antimicrobial Agents and Chemotherapy, 36, 1151–1154.

Hopkins, J. M., & Towner, K. J. (1990). Enhanced resistance to cefotaxime and imipenem associated with outer membrane protein alterations in Enterobacter aerogenes. Journal of Antimicrobial Chemotherapy, 25(1), 49–55.

Horinouchi, S., & Weisblum, B. (1982). Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. Journal of Bacteriology, 150(2), 815–825.

Eliopoulos, G. M., & Huovinen, P. (2001). Resistance to Trimethoprim-Sulfamethoxazole. Clinical Infectious Diseases, 32(11), 1608–1614.

Huovinen, P., Sundström, L., Swedberg, G., & Sköld, O. (1995). Trimethoprim and sulfonamide resistance. Antimicrobial Agents and Chemotherapy, 39, 279–289.

Isnard, C., Malbruny, B., Leclercq, R., & Cattoir, V. (2013). Genetic basis for in vitro and in vivo resistance to lincosamides, streptogramins A, and pleuromutilins (LSAP phenotype) in Enterococcus faecium. Antimicrobial Agents and Chemotherapy, 57(9), 4463–4469.

Jacoby, G. A., Strahilevitz, J., & Hooper, D. C. (2014). Plasmid-mediated quinolone resistance. Microbiology Spectrum, 2(5).

Jones, M. E., Sahm, D. F., Martin, N., Scheuring, S., Heisig, P., Thornsberry, C., Kohrer, K., & Schmitz, F.-J. (2000). Prevalence of gyrA, gyrB, parC, and parE mutations in clinical isolates of Streptococcus pneumoniae with decreased susceptibilities to different fluoroquinolones and originating from worldwide surveillance studies during the 1997–1998 respiratory season. Antimicrobial Agents and Chemotherapy, 44 (2), 462–466.

Juárez-Verdayes, M. A., Parra-Ortega, B., Hernández-Rodríguez, C., Betanzos-Cabrera, G., Rodríguez-Martínez, S., Cancino-Diaz, M. E., & Cancino-Diaz, J. C. (2012). Identification and expression of nor efflux family genes in Staphylococcus epidermidis that act against gatifloxacin. Microbial Pathogenesis, 52(6), 318–325.

Kadlec, K., & Schwarz, S. (2009). Identification of a novel trimethoprim resistance gene, dfrK, in a methicillin-resistant Staphylococcus aureus ST398 strain and its physical linkage to the tetracycline resistance gene tet (L). Antimicrobial Agents and Chemotherapy, 53(2), 776–778.

Kadlec, K., & Schwarz, S. (2010). Identification of the novel dfrK-carrying transposon Tn559 in a porcine methicillin-susceptible Staphylococcus aureus ST398 strain. Antimicrobial Agents and Chemotherapy, 54(8), 3475–3477.

Kehrenberg, C., & Schwarz, S. (2005). dfrA20, a novel trimethoprim resistance gene from Pasteurella multocida. Antimicrobial Agents and Chemotherapy, 49(1), 414–417.

Köhler, T., Kok, M., Michea-Hamzehpour, M., Plesiat, P., Gotoh, N., Nishino, T., Curty, L. K., & Pechere, J. C. (1996). Multidrug efflux in intrinsic resistance to trimethoprim and sulfamethoxazole in Pseudomonas aeruginosa. Antimicrobial Agents and Chemotherapy, 40(10), 2288–2290.

Leclercq, R., & Courvalin, P. (1991). Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrobial Agents and Chemotherapy, 35(7), 1267–1272.
Leclercq, R., & Courvalin, P. (1991). Intrinsic and unusual resistance to macrolide, lincosamide, and streptogramin antibiotics in bacteria. Antimicrobial Agents and Chemotherapy, 35(7), 1273–1276.

Lee, A., Mao, W., Warren, M. S., Mistry, A., Hoshino, K., Okumura, R., Ishida, H., & Lomovskaya, O. (2000). Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. Journal of Bacteriology, 182(11), 3142–3150.

Levy, S. B., McMurry, L. M., Barbosa, T. M., Burdett, V., Courvalin, P., Hillen, W., Roberts, M. C., Rood, J. I., & Taylor, D. E. (1999). Nomenclature for new tetracycline resistance determinants. Antimicrobial Agents and Chemotherapy, 43, 1523–1524.

Li, B. B., Shen, J. Z., Cao, X. Y., Wang, Y., Dai, L., Huang, S. Y., & Wu, C. M. (2010). Mutations in 23S rRNA gene associated with decreased susceptibility to tiamulin and valnemulin in Mycoplasma gallisepticum. FEMS Microbiology Letters, 308(2), 144–149.

Ling, Z., Yin, W., Li, H., Zhang, Q., Wang, X., Wang, Z., Ke, Y., Wang, Y., & Shen. J. (2017). Chromosome-mediated mcr-3 variants in Aeromonas veronii from chicken meat. Antimicrobial Agents and Chemotherapy, 61(11), e01272-17.

Liu, Y. Y., Wang, Y., Walsh, T. R., Yi, L. X., Zhang, R., Spencer, J., Doi, Y., Tian, G., Dong, B., Huang, X., Yu, L. F., Gu, D., Ren, H., Chen, X., Lv, L., He, D., Zhou, H., Liang, Z., Liu, J. H., & Shen, J. (2016). Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. The Lancet Infectious Diseases, 16(2), 161–168.

Livermore, D. M. (1995). beta-Lactamases in laboratory and clinical resistance. Clinical Microbiology Reviews, 8(4), 557–584.

Llobet, E., Toma´s, J. M., & Bengoechea, J. A. (2008). Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology, 154, 3877–3886.

Lopez, M., Kadlec, K., Schwarz, S., & Torres, C. (2012). First detection of the staphylococcal trimethoprim resistance gene dfrK and the dfrK-carrying transposon Tn559 in enterococci. Microbial Drug Resistance, 18, 13–18.

Martínez-Martínez, L., Hernández-Allés, S., Albertí, S., Tomás, J. M., Benedi, V. J., & Jacoby, G. A. (1996). In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum-cephalosporins. Antimicrobial Agents and Chemotherapy, 40(2), 342–348.

McMurry, L. M., George, A. M., & Levy, S. B. (1994). Active efflux of chloramphenicol in susceptible Escherichia coli strains and in multiple-antibiotic-resistant (Mar) mutants. Antimicrobial Agents and Chemotherapy, 38(3), 542–546.

Meier, A., Sander, P., Schaper, K. J., Scholz, M., & Böttger, E. C. (1996). Correlation of molecular resistance mechanisms and phenotypic resistance levels in streptomycin-resistant Mycobacterium tuberculosis. Antimicrobial Agents and Chemotherapy, 40(11), 2452–2454.

Mingeot-Leclercq, M.-P., Glupczynski, Y., & Tulkens, P. M. (1999). Aminoglycosides: Activity and Resistance. Antimicrobial Agents and Chemotherapy, 43(4), 727–737.

Miranda, C. D., Kehrenberg, C., Ulep, C., Schwarz, S., & Roberts, M. C. (2003). Diversity of tetracycline resistance genes in bacteria from chilean salmon farms. Antimicrobial Agents and Chemotherapy, 47(3), 883–888.

Mitsuyama, J., Hiruma, R., Yamaguchi, A., & Sawai, T. (1987). Identification of porins in outer membrane of Proteus, Morganella, and Providencia spp. and their role in outer membrane permeation of β-lactams. Antimicrobial Agents and Chemotherapy, 31(3), 379–380.

Murray, I. A., Hawkins, A. R., Keyte, J. W., & Shaw, W. V. (1988). Nucleotide sequence analysis and overexpression of the gene encoding a type III chloramphenicol acetyltransferase. Biochemical Journal, 252(1), 173–179.

Murray, I. A., Martinez-Suarez, J. V., Close, T. J., & Shaw, W. V. (1990). Nucleotide sequences of genes encoding the type II chloramphenicol acetyltransferases of Escherichia coli and Haemophilus influenzae, which are sensitive to inhibition by thiol-reactive reagents. Biochemical Journal, 272(2), 505–510.

Murray, I. A., & Shaw, W. V. (1997). O-Acetyltransferases for chloramphenicol and other natural products. Antimicrobial Agents and Chemotherapy, 41(1), 1–6.

Oethinger, M., Kern, W. V., Jellen-Ritter, A. S., McMurry, L. M., & Levy, S. B. (2000). Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrobial Agents and Chemotherapy, 44(1), 10–13.

Oethinger, M., Podglajen, I., Kern, W. V., & Levy, S. B. (1998). Overexpression of the marA or soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrobial Agents and Chemotherapy, 42(8), 2089–209.

Okusu, H., Ma, D., & Nikaido, H. (1996). AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. Journal of Bacteriology, 178(1), 306–308.

Olaitan, A. O., Morand, S., & Rolain, J. M. (2014). Mechanisms of polymyxin resistance: acquired and intrinsic resistance in bacteria. Frontiers in Microbiology, 26(5), 64.

Olliver, A., Vallé, M., Chaslus-Dancla, E., & Cloeckaert, A. (2004). Role of anacrRmutation in multidrug resistance ofin vitro-selected fluoroquinolone-resistant mutants ofSalmonella entericaserovar Typhimurium. FEMS Microbiology Letters, 238(1), 267–272.

Padayachee, T., & Klugman, K. P. (1999). Novel expansions of the gene encoding dihydropteroate synthase in trimethoprim-sulfamethoxazole-resistant Streptococcus pneumoniae. Antimicrobial Agents and Chemotherapy, 43(9), 2225–2230.

Pattishall, K. H., Acar, J., Burchall, J. J., Goldstein, F. W., & Harvey, R. J. (1977). Two distinct types of trimethoprim-resistant dihydrofolate reductase specified by R-plasmids of different compatibility groups. Journal of Biological Chemistry, 252, 2319–2323.

Paulsen, I. T., Brown, M. H., & Skurray, R. A. (1996). Proton-dependent multidrug efflux systems. Microbiological Reviews, 60(4), 575–608.

Perreten, V., & Boerlin, P. (2003). A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population of Switzerland. Antimicrobial Agents and Chemotherapy, 47(3), 1169–1172.

Petrosino, J., Cantu, C., & Palzkill, T. (1998). β-Lactamases: protein evolution in real time. Trends in Microbiology, 6(8), 323–327.

Pikis, A., Donkersloot, J. A., Rodriguez, W. J., & Keith, J. M. (1998). A conservative amino acid mutation in the chromosome-encoded dihydrofolate reductase confers trimethoprim resistance in Streptococcus pneumoniae. The Journal of Infectious Diseases,178(3), 700–706.

Poole, K. (2000). Efflux-mediated resistance to fluoroquinolones in Gram-negative bacteria. Antimicrobial Agents and Chemotherapy, 44, 2233–2241.

Poole, K. (2000). Efflux-mediated resistance to fluoroquinolones in Gram-positive bacteria and the mycobacteria. Antimicrobial Agents and Chemotherapy, 44(10), 2595–2599.

Potron, A., Poirel, L., & Nordmann, P. (2015). Emerging broad-spectrum resistance in Pseudomonas aeruginosa and Acinetobacter baumannii: mechanisms and epidemiology. The International Journal of Antimicrobial Agents, 45(6), 568–585.

Pringle, M., Landén, A., Unnerstad, H. E., Molander, B., & Bengtsson, B. (2012). Antimicrobial susceptibility of porcine Brachyspira hyodysenteriae and Brachyspira pilosicoli isolated in Sweden between 1990 and 2010. Acta Veterinaria Scandinavica, 54(1).

Pringle, M., Poehlsgaard, J., Vester, B., & Long, K. S. (2004). Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates. Molecular Microbiology, 54(5), 1295–1306.

Putman, M., van Veen, H. W., & Konings, W. N. (2000). Molecular properties of bacterial multidrug transporters. Microbiology and Molecular Biology Reviews, 64(4), 672–693.

Radström, P., & Swedberg, G. (1988). RSF1010 and a conjugative plasmid contain sulII, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase. Antimicrobial Agents and Chemotherapy, 32(11), 1684–1692.

Ramirez, M. S., & Tolmasky, M. E. (2010). Aminoglycoside modifying enzymes. Drug Resistance Updates, 13(6), 151–171.

Recchia, G. D., & Hall, R. M. (1995). Gene cassettes: a new class of mobile element. Microbiology, 141(12), 3015–3027.

Roberts, M. C., & Schwarz, S. (2016). Tetracycline and phenicol resistance genes and mechanisms: importance for agriculture, the environment, and humans. Journal of Environmental Quality, 45(2), 576–592.

Roberts, M. C., Schwarz, S., & Aarts, H. J. (2012). Erratum: acquired antibiotic resistance genes: an overview. Frontiers in Microbiology, 3, 384.

Roberts, M. C., Sutcliffe, J., Courvalin, P., Jensen, L. B., Rood, J., & Seppala, H. (1999). Nomenclature for macrolide and macrolide-lincosamide-streptogramin B resistance determinants. Antimicrobial Agents and Chemotherapy, 43(12), 2823–2830.

Rodríguez-Martínez, J. M., Machuca, J., Cano, M. E., Calvo, J., Martínez-Martínez, L., & Pascual, A. (2016). Plasmid-mediated quinolone resistance: Two decades on. Drug Resistance Updates, 29, 13–29.

Rosenberg, E. Y., Ma, D., & Nikaido, H. (2000). AcrD of Escherichia coli is an aminoglycoside efflux pump. Journal of Bacteriology, 182(6), 1754–1756.

Ruiz, J. (2003). Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. Journal of Antimicrobial Chemotherapy, 51(5), 1109–1117.

Salyers, A. A., Shoemaker, N. B., Stevens, A. M., & Li, L. Y. (1995). Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiological Reviews, 59(4), 579–590.

Salyers, A. A., & Whitt, D. D. (1994). Bacterial Pathogenesis: a Molecular Approach. ASM Press, Washington, DC.

Schwarz, S., & Cardoso, M. (1991). Nucleotide sequence and phylogeny of a chloramphenicol acetyltransferase encoded by the plasmid pSCS7 from Staphylococcus aureus. Antimicrobial Agents and Chemotherapy, 35(8), 1551–1556.

Schwarz, S., & Chaslus-Dancla, E. (2001). Use of antimicrobials in veterinary medicine and mechanisms of resistance. Veterinary Research, 32(3-4), 201–225.

Schwarz, S., & Johnson, A. P. (2016). Transferable resistance to colistin: a new but old threat: Table 1. Journal of Antimicrobial Chemotherapy, 71(8), 2066–2070.

Schwarz, S., Kehrenberg, C., Doublet, B., & Cloeckaert, A. (2004). Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiology Reviews, 28(5), 519–542.

Schwarz, S., Loeffler, A., & Kadlec, K. (2016a). Bacterial resistance to antimicrobial agents and its impact on veterinary and human medicine. Veterinary Dermatology, 28(1), 82–e19.

Schwarz, S., & Noble, W. C. (1999). Aspects of bacterial resistance to antimicrobial agents used in veterinary dermatological practice. Veterinary Dermatology, 10, 163–176.

Schwarz, S., Shen, J., Kadlec, K., Wang, Y., Brenner Michael, G., Febler, A. T., &Vester, B. (2016b). Lincosamides, streptogramins, phenicols, and pleuromutilins: mode of action and mechanisms of resistance. Cold Spring Harbor Perspectives in Medicine, 6(11), a027037.

Sekiguchi, J., Tharavichitkul, P., Miyoshi-Akiyama, T., Chupia, V., Fujino, T., Araake, M., Irie, A., Morita, K., Kuratsuji, T., & Kirikae, T. (2005). Cloning and characterization of a novel trimethoprim-resistant dihydrofolate reductase from a nosocomial isolate of Staphylococcus aureus CM.S2 (IMCJ1454). Antimicrobial Agents and Chemotherapy, 49(9), 3948–3951.

Sharkey, L. K., Edwards, T. A., & O’Neill, A. J. (2016). ABC-F proteins mediate antibiotic resistance through ribosomal protection. MBio, 7(2), e01975.

Shaw, K. J., Rather, P. N., Hare, R. S., & Miller, G. H. (1993). Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbiology Reviews, 57(1), 138–163.

Shaw, W. V. (1983). Chloramphenicol acetyltransferase: enzymology and molecular biology. Critical Reviews in Biochemistry and Molecular Biology, 14(1), 1–46.

Simonet, V., Malléa, M., & Pagès, J.-M. (2000). Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrobial Agents and Chemotherapy, 44(2), 311–315.

Sköld, O. (2000). Sulfonamide resistance: mechanisms and trends. Drug resistance updates, 3(3), 155–160.

Sköld, O. (2001). Resistance to trimethoprim and sulfonamides. Veterinary Research, 32(3-4), 261–273.

Speer, B. S., Shoemaker, N. B., & Salyers, A. A. (1992). Bacterial resistance to tetracycline: mechanisms, transfer, and clinical significance. Clinical Microbiology Reviews, 5(4), 387–399.

Sundström, L., Rådström, P., Swedberg, G., & Sköld, O. (1988). Site-specific recombination promotes linkage between trimethoprim- and sulfonamide resistance genes. Sequence characterization of dhfrV and sulI and a recombination active locus of Tn21. Molecular Genetics and Genomics, 213(2-3), 191–201.

Swedberg, G., & Sköld, O. (1980). Characterization of different plasmid-borne dihydropteroate synthases mediating bacterial resistance to sulfonamides. Journal of Bacteriology, 142(1), 1–7.

Taylor, D. E., & Chau, A. (1996). Tetracycline resistance mediated by ribosomal protection. Antimicrobial Agents and Chemotherapy, 40(1), 1–5.

Tran, J. H., & Jacoby, G. A. (2002). Mechanism of plasmidmediated quinolone resistance. Proceedings of the National Academy of Sciences, 99(8), 5638–5642.

Tsiodras, S., Gold, H. S., Sakoulas, G., Eliopoulos, G. M., Wennersten, C., Venkataraman, L., Moellering, R. C. Jr., & Ferraro, M. J. (2001). Linezolid resistance in a clinical isolate of Staphylococcus aureus. The Lancet, 358(9277), 207–208.

Vester, B., & Douthwaite, S. (2001). Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrobial Agents and Chemotherapy, 45(1), 1–12.

Wachino, J., & Arakawa, Y. (2012). Exogenously acquired 16S rRNA methyltransferases found in aminoglycosideresistant pathogenic Gram-negative bacteria: an update. Drug Resistance Updates, 15(3), 133–148.

Webber, M., & Piddock L. J. V. (2001). Quinolone resistance in Escherichia coli. Veterinary Research, 32(3-4), 275–284.

Weisblum, B. (1995). Erythromycin resistance by ribosome modification. Antimicrobial Agents and Chemotherapy, 39(3), 577–585.

Weisblum, B. (1995). Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrobial Agents and Chemotherapy, 39(4), 797–805.

Wendlandt, S., Kadlec, K., Febler, A. T., & Schwarz, S. (2015). Identification of ABC transporter genes conferring combined pleuromutilin-lincosamide-streptogramin A resistance in bovine methicillin-resistant Staphylococcus aureus and coagulase-negative staphylococci. Veterinary Microbiology, 177, 353–358.

Wendlandt, S., Shen, J., Kadlec, K., Wang, Y., Li, B., Zhang, W. J., Febler, A. T., Wu, C., & Schwarz, S. (2015). Multidrug resistance genes in staphylococci from animals that confer resistance to critically and highly important antimicrobial agents in human medicine. Trends in Microbiology, 23, 44–54.

Wolter, D. J., Hanson, N. D., & Lister, P. D. (2004). Insertional inactivation ofoprD in clinical isolates ofPseudomonas aeruginosaleading to carbapenem resistance. FEMS Microbiology Letters, 236(1), 137–143.

Wright, G. D. (1999). Aminoglycoside-modifying enzymes. Current Opinion in Microbiology, 2, 499–50.

Xavier, B. B., Lammens, C., Ruhal, R., Kumar-Singh, S., Butaye, P., Goossens, H., & Malhotra-Kumar, S. (2016). Identification of a novel plasmid-mediated colistin-resistance gene, mcr-2, in Escherichia coli, Belgium, June 2016. Eurosurveillance, 21(27).

Yin, W., Li, H., Shen, Y., Liu, Z., Wang, S., Shen, Z., Zhang, R., Walsh, T. R., Shen, J., & Wang, Y. (2017). Novel plasmidmediated colistin resistance gene mcr-3 in Escherichia coli. MBio, 8(3), e00543-1.

Yoshida, H., Bogaki, M., Nakamura, M., & Nakamura, S. (1990). Quinolone resistance-determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrobial Agents and Chemotherapy, 34(6), 1271–1272.

Young, M. L., Bains, M., Bell, A., & Hancock, R. E. (1992). Role of Pseudomonas aeruginosa outer membrane protein OprH in polymyxin and gentamicin resistance: isolation of an OprH-deficient mutant by gene replacement techniques. Antimicrobial Agents and Chemotherapy, 36(11), 2566–256.

Abstract views: 102
PDF Downloads: 88
How to Cite
Stetsko, T. I., Muzyka, V. P., & Kozak, M. R. (2020). Mechanisms of antimicrobial resistance development in bacteria. Theoretical and Applied Veterinary Medicine, 8(3), 226-236.