Influence of humic substances on physiological osteogenesis and the blood system of rabbits while using PLA implants

Keywords: humic substances; feed additive; biopolymers; bone tissue; hematological parameters; adaptogen; rabbit; Humilid

Abstract

PLA-based implants are characterized by high biocompatibility with body tissues, and are also distinguished by their biodegradable and osseointegrative properties. The regulation of bone tissue growth and development is inextricably linked with the blood system, which is a source of plastic substances and hormones of calcium homeostasis. When PLA implants were inserted into the parietal bone of rabbits, changes occurred in their bodies that were typical for the period after orthopedic and traumatological operations. Metabolism dysregulation of macro- and microelements and disturbances of erythropoiesis, which can occur in the postoperative period, have a negative effect on the bone tissue growth in the young rabbits’ body. It has been proven that humic substances were able to influence the activity of osteoblasts and regulate mineral metabolism. For the experiment, 32 rabbits were divided into four groups, 8 rabbits in each group; sixteen rabbits underwent surgery using PLA implants, which were placed bilaterally in the parietal bone. Eight of the 16 operated rabbits were given Humilid together with water, the rest of them received pure water. Eight of 16 rabbits, intact before surgery, received Humilid together with water, the non-surgical control group did not receive Humilid. The influence of humic substances on physiological osteogenesis and hematological parameters during the use of PLA implants was determined. On the 14th day of the experiment, the rabbits of the surgical group receiving Humilid did not show a decrease in erythrocytes, hemoglobin, and an increase in leukocytes, in contrast to the rabbits of the surgical control group. An increase in the number of osteons and osteoblasts layers was recorded in the femur of the young rabbits that were receiving Humilid, and in the sternum – the number of osteons and layers of osteoblasts. There was also an increase in the number of erythrocytes and hemoglobin in the non-surgical group rabbits that were receiving Humilid to compare the rabbits of the non-surgical control group. ln rabbits that received Humilid, there was an intensification of bone tissue growth against the background of physiological and reparative osteogenesis.

Downloads

Download data is not yet available.

References

Aeschbacher, M., Graf, C., Schwarzenbach, R. P., & Sander, M. (2012). Antioxidant properties of humic substances. Environmental Science & Technology, 46(9), 4916–4925.

Apostu, D., Lucaciu, O., Lucaciu, G. D. O., Crisan, B., Crisan, L., Baciut, M., Onisor, F., Baciut, G., Câmpian, R., & Bran, S. (2017). Systemic drugs that influence titanium implant osseointegration. Drug Metabolism Reviews, 49(1), 92–104.

Brunner, F., Schmid, A., Kissling, R., Held, U., & Bachmann, L. M. (2009). Biphosphonates for the therapy of complex regional pain syndrome I - Systematic review. European Journal of Pain, 13(1), 17–21.

Çalışır, M., Akpınar, A., Poyraz, Ö., Göze, F., & Çınar, Z. (2015). The histopathological and morphometric investigation of the effects of systemically administered humic acid on alveolar bone loss in ligature-induced periodontitis in rats. Journal of Periodontal Research, 51(4), 499–507.

Chien, S.-J., Chen, T.-C., Kuo, H.-C., Chen, C.-N., & Chang, S.-F. (2015). Fulvic acid attenuates homocysteine-induced cyclooxygenase-2 expression in human monocytes. BMC Complementary and Alternative Medicine, 15(1).

Da Silva, D., Kaduri, M., Poley, M., Adir, O., Krinsky, N., Shainsky-Roitman, J., & Schroeder, A. (2018). Biocompatibility, biodegradation and excretion of polylactic acid (PLA) in medical implants and theranostic systems. Chemical Engineering Journal, 340, 9–14.

Das, A., Tanner, S., Barker, D. A., Green, D., & Botchwey, E. A. (2013). Delivery of S1P receptor-targeted drugs via biodegradable polymer scaffolds enhances bone regeneration in a critical size cranial defect. Journal of Biomedical Materials Research Part A, 102(4), 1210–1218.

Dyomshina, O. O., Ushakova, G. O., & Stepchenko, L. M. (2017). The effect of biologically active feed additives of humilid substances on the antioxidant system in liver mitochondria of gerbils. Regulatory Mechanisms in Biosystems, 8(2), 185–190.

Esposito Corcione, C., Gervaso, F., Scalera, F., Montagna, F., Sannino, A., & Maffezzoli, A. (2016). The feasibility of printing polylactic acid-nanohydroxyapatite composites using a low-cost fused deposition modeling 3D printer. Journal of Applied Polymer Science, 134(13).

Gregor, A., Filová, E., Novák, M., Kronek, J., Chlup, H., Buzgo, M., Blahnová, V., Lukášová, V., Bartoš, M., Nečas, A., & Hošek, J. (2017). Designing of PLA scaffolds for bone tissue replacement fabricated by ordinary commercial 3D printer. Journal of Biological Engineering, 11(1).

Haffner-Luntzer, M., Heilmann, A., Heidler, V., Liedert, A., Schinke, T., Amling, M., Yorgan, T. A., Scheidt, A., & Ignatius, A. (2016). Hypochlorhydria-induced calcium malabsorption does not affect fracture healing but increases post-traumatic bone loss in the intact skeleton. Journal of Orthopaedic Research, 34(11), 1914–1921.

Hedström, M., åström, K., Sjöberg, H., Dalén, N., Sjöberg, K., & Brosjö, E. (2002). Positive effects of anabolic steroids, vitamin D and calcium on muscle mass, bone mineral density and clinical function after a hip fracture. The Journal of Bone and Joint Surgery. British Volume, 84-B(4), 497–503.

Islam, K. M. S., Schumacher, A., & Gropp, M. J. (2005). Humicacid substances in animal agriculture. Pakistan Journal of Nutrition, 4, 126–134.

Ipek, H., Avci, M., Iriadam, M., Kaplan, O., & Denek, N. (2008). Effects of humic acid on some hematological parameters, total antioxidant capacity and laying performance in Japanese quails. Archiv fur Geflugelkunde, 72, 56–60.

Kushch, M. M., Fesenko, I.A., Byrka, O.V., Nosovska, G.P., & Stepchenko, L. M. (2012). Vplyv humilida na morfometrychni pokaznyky orhaniv travlennia i imunitetu huseniat [The effect of humilide on the morphometric parameters of the digestive and immunity organs of goslings]. Poultry Breeding, 68, 267–273 (in Ukrainian).

Kozlovsky, A., Tal, H., Laufer, B.-Z., Leshem, R., Rohrer, M. D., Weinreb, M., & Artzi, Z. (2007). Impact of implant overloading on the peri-implant bone in inflamed and non-inflamed peri-implant mucosa. Clinical Oral Implants Research, 18(5), 601–610.

Jansen van Rensburg, C. E., & Naude, P. J. (2009). Potassium humate inhibits complement activation and the production of inflammatory cytokines in vitro. Inflammation, 32(4), 270–276.

Jung, C.-R., Schepetkin, I. A., Woo, S. B., Khlebnikov, A. I., & Kwon, B. S. (2002). Osteoblastic differentiation of mesenchymal stem cells by mumie extract. Drug Development Research, 57(3), 122–133.

Loi, F., Córdova, L. A., Pajarinen, J., Lin, T., Yao, Z., & Goodman, S. B. (2016). Inflammation, fracture and bone repair. Bone, 86, 119–130.

Rusliandi, R., Rousdy, D., & Mukarlina, D. The anti-inflammatory activity of humic acid from borneo peat soil in mice. Majalah Obat Tradisional, 25(1), 22–28.

O’Keefe, R. J., & Mao, J. (2011). Bone tissue engineering and regeneration: from discovery to the clinic–an overview. Tissue Engineering Part B: Reviews, 17(6), 389–392.

Prakasam, M., Locs, J., Salma-Ancane, K., Loca, D., Largeteau, A., & Berzina-Cimdina, L. (2017). Biodegradable materials and metallic implants – a review. Journal of Functional Biomaterials, 8(4), 44.

Rybalka, M. A., Stepchenko, L. M., Shuleshko, O. O., & Zhorina, L. V. (2020). The impact of humic acid additives on mineral metabolism of rabbits in the postnatal period of ontogenesis. Regulatory Mechanisms in Biosystems, 11(2), 289–293.

Rybalka, M. A. & Stepchenko, L. M. (2020). Features of mineral metabolism in rabbits during correction with biologically active feed additives against the background of implantation of PLA implants. Theoretical and Applied Veterinary Medicine, 8(2), 171‒178.

Schepetkin, I., Khlebnikov, A., & Kwon, B. S. (2002). Medical drugs from humus matter: Focus on mumie. Drug Development Research, 57(3), 140–159.

Skoryk, M. V. (2009). Funkcional’nyj stan erytrocytiv i vmist mikroelementiv u vnutrishnih organah kurejnesuchok za vplyvu rechovyn guminovoi’ pryrody. Extended abstract of candidate’s thesis. Lviv. National University of Veterinary Medicine and Biotechnology S. Z. Gzhytsky (in Ukrainian).

Stepchenko, L. M., Losjeva, Je. O., & Skoryk, M. V. (2008). Funkcional’nyj stan organizmu produktyvnoi’ ptyci za dii’ gidrogumatu [Functional state of productive poultry for actions hidrohumat]. News of Dnipropetrovk State Agrarian University, 2, 99–103 (in Ukrainian).

Trckova, M., Matlova, L., Hudcova, H., Faldyna, M., Zraly, Z., Dvorska, L. & Pavlik, I. (2005). Peat as a feed supplement for animal: A review. Veterinarni Medicina Praha, 50, 361–377.

Yefimov, V. G. (2017). Kletochnyj sostav i limfocitarnyj profil’ krovi molodnjaka svinej pod vlijaniem gumata natrija, jantarnoj kisloty i mikrojelementov [The cellular composition and lymphocytic blood profile of young pigs under the influence of sodium humate, succinic acid and trace elements.]. Uchenye Zapiski Uchrezhdenija Obrazovanija «Vitebskaja Gosudarstvennaja Akademija Veterinarnoj Mediciny», 53 (4), 103–106.

Abstract views: 173
PDF Downloads: 179
Published
2020-11-25
How to Cite
Rybalka, M. A., Stepchenko, L. M., Galuzina, L. I., & Krutous, D. I. (2020). Influence of humic substances on physiological osteogenesis and the blood system of rabbits while using PLA implants. Theoretical and Applied Veterinary Medicine, 8(4), 269-275. https://doi.org/10.32819/2020.84040

Most read articles by the same author(s)