Modern concept of physiological signaling systems in cattle fetuses with the participation of FC-γ-receptors

Keywords: FcγR; IgG; fetus; cattle; physiological signaling systems

Abstract

The article presents a literature review on the modification of expression and recycling of Fc-γ-receptors of fetal jejunal enterocytes in cattle. Based on the analyzed data, a modern concept of physiological signaling systems in cattle fetuses with the participation of Fc-γ receptors has been developed. These results indicated age-related modulation of FcγR intestinal cells expression during the entire fetal period of cattle, and the dynamics of changes in the content of polypeptides with different molecular weights that exhibit Fc-γ-binding activity in the basolateral and apical regions of the enterocyte’s plasma membrane and have certain characteristic features for each groups of receptors for IgG. It has been proven that the regulation of FcγR expression by plasma membrane of jejunal enterocytes in cattle during the fetal period of ontogenesis is controlled by mechanisms associated with fetal development. The obtained research results and their in-depth analysis made it possible to propose a scientific concept on the physiological functions of FcγR during the fetal period of cattle ontogenesis. In particular, they translocate signals by the mother-placenta-fetus chain, form one of the key signaling systems for regulating the development of enterocytes, recognize specific signals from immunoglobulins and antigens, play an important role in the transcytosis and recycling of IgG from the amniotic fluid into fetal circulation, and form the immune mechanisms of the fetus for the intrauterine functioning body adaptation and prepare it for antigenic pressure after birth. So, the expression modulation, localization and identification of polypeptides on the plasma membrane that exhibit Fc-γ-binding activity, makes it possible to form a signaling system and control the development of barrier and immune functions in the fetus with the participation of FcγR.

Downloads

Download data is not yet available.

References

Alipour, M. J., Jalanka, J., Pessa-Morikawa, T., Kokkonen, T., Satokari, R., Hynönen, U., & Niku, M. (2018). The composition of the perinatal intestinal microbiota in cattle. Scientific Reports, 8(1).

Borthistle, B. K., Kubo, R. T., Brown, W. R., & Grey, H. M. (1977). Studies on receptors for IgG on epithelial cells of the rat intestine. Journal of Immunology, 119(2), 471–476.

Buhai, A. O., & Tsvilikhovskyi, M. I. (2010). Enzymatyvna aktyvnist transportnykh ATFaz plazmolemy absorbtsiinykh enterotsytiv kurchat–broileriv za vplyvu likopenu. Biolohiia Tvaryn, 12(2), 96–105 (in Ukrainian).

Cassard, L., Cohen-Solal, J. F. G., Fournier, E. M., Camilleri-Broët, S., Spatz, A., Chouaïb, S., & Sautès-Fridman, C. (2008). Selective expression of inhibitory Fcγ receptor by metastatic melanoma impairs tumor susceptibility to IgG-dependent cellular response. International Journal of Cancer, 123(12), 2832–2839.

Dickinson, B. L., Badizadegan, K., Wu, Z., Ahouse, J. C., Zhu, X., Simister, N. E., & Lencer, W. I. (1999). Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. Journal of Clinical Investigation, 104(7), 903–911.
Eisenreich, W., Rudel, T., Heesemann, J., & Goebel, W. (2017). To eat and to be eaten: mutual metabolic adaptations of immune cells and intracellular bacterial pathogens upon infection. Frontiers in Cellular and Infection Microbiology, 7.

Garen, A., & Levinthal, C. (1960). A fine-structure genetic and chemical study of the enzyme alkaline phosphatase of E. Coli I. Purification and characterization of alkaline phosphatase. Biochimica et Biophysica Acta, 38, 470–483.

Gavrilin, P. M., Kryshtoforova, B. V., Masiuk, D. M., & Biben, I. A. (2004). Kontseptsiia pidvyshchennia zhyttiezdatnosti novonarodzhenykh teliat. Visnyk Dnipropetrovskoho Derzhavnoho Ahrarnoho Universytetu, 1, 96–98 (in Ukrainian).

Gavrilin, P. N., Lieshchova, M. A., Gavrilina, O. G., & Boldyreva, T. F. (2018). Prenatal morphogenesis of compartments of the parenchyma of the lymph nodes of domestic cattle (Bos taurus). Regulatory Mechanisms in Biosystems, 9(1), 95–104.

Hamaguchi, Y., Xiu, Y., Komura, K., Nimmerjahn, F., & Tedder, T. F. (2006). Antibody isotype-specific engagement of Fcγ receptors regulates B lymphocyte depletion during CD20 immunotherapy. Journal of Experimental Medicine, 203(3), 743–753.

Hogarth, P. M. (2002). Fc-receptors are major mediators of antibody based inflammation in autoimmunity. Current Opinion in Immunology, 14(6), 798–802.

Junker, F., Gordon, J., & Qureshi, O. (2020). Fc gamma receptors and their role in antigen uptake, presentation, and t cell activation. Frontiers in Immunology, 11.

Kacskovics, I., Wu, Z., Simister, N. E., Frenyó, L. V., & Hammarström, L. (2000). Cloning and characterization of the bovine mhc class i-like fc receptor. The Journal of Immunology, 164(4), 1889–1897.

Kaifu, T., & Nakamura, A. (2017). Polymorphisms of immunoglobulin receptors and the effects on clinical outcome in cancer immunotherapy and other immune diseases: a general review. International Immunology, 29(7), 319–325.

Korhonen, H., Marnila, P., & Gill, H. S. (2000). Milk immunoglobulins and complement factors. British Journal of Nutrition, 84(S1), 75–80.

Leary, H. L., Larson, B. L., & Nelson, D. R. (1982). Immunohistochemical localization of IgG1 and IgG2 in prepartum and lactating bovine mammary tissue. Veterinary Immunology and Immunopathology, 3(5), 509–514.

Lieshchova, M. O. (2007). Features of the morphogenesis of bovine fetal lymphoid organs. Kyiv, Natsionalnyi Ahrarnyi Universytet (in Ukrainian).

Maltais, L. J., Lovering, R. C., Taranin, A. V., Colonna, M., Ravetch, J. V., Dalla-Favera, R., & Davis, R. S. (2006). New nomenclature for Fc receptor–like molecules. Nature Immunology, 7(5), 431–432.

Masiuk, D. M. (2008). Fc-γ-retseptory apikalnykh membran enterotsytiv velykoi rohatoi khudoby u rannii plodovyi period: polipeptydnyi sklad ta yikh dynamika. Naukovo-Tekhnichnyi Biuleten Instytutu Biolohii Tvaryn i DNDKI Veterynarnykh Preparativ ta Korm. Dobavok, 9(3), 73–78 (in Ukrainian).

Masiuk, D. M. (2019). Structural proteins of plasmolemma of the jejunum absorbing enterocytes of cattle fetus in early fetal period. Ukrainian Journal of Veterinary and Agricultural Sciences, 2(3), 32–38.

Masiuk, D. M. (2020a). Expression of plasmolemma proteins of the absorptive enterocytes of the cattle in the late fetal period. Ukrainian Journal of Veterinary and Agricultural Sciences, 3(1), 52–57.

Masiuk, D. (2020b). Vzaiemozviazok ekspresii fc-γ-retseptornykh proteiniv z aktyvnistiu okremykh enzymiv u plazmolemi enterotsytiv porozhnoi kyshky plodiv velykoi rohatoi khudoby. Ukrainskyi Chasopys Veterynarnykh Nauk, 11(1), 70–80 (in Ukrainian).

Masiuk, D. M., Kokariev, A. V., Vasilenko, T. O., & Krutii, K. O. (2019). The formation of colostral immunity and its duration in calves during the first months of life. Ukrainian Journal of Veterinary and Agricultural Sciences, 2(1), 3–6.

Masiuk, D., & Tsvilikhovskyi, M. (2011). Moduliatsiia ekspresii Fc-γ-retseptoriv enterotsytiv velykoi rohatoi khudoby u plodovyi period. Naukovi Pratsi Pivdennoho Filialu Natsionalnoho Universytetu Bioresursiv i Pryrodo-korystuvannia Ukrainy «Krymskyi Ahrotekhnolohichnyi Universytet», 139, 222–227 (in Ukrainian).

Masiuk, D. M. (2020c). Strukturno-funktsionalna kharakterystyka bilkiv plazmolemy enterotsytiv porozhnoi kyshky velykoi rohatoi khudoby u plodovyi period ontohenezu. Extended abstract of Doctor’s thesis. Kyiv (in Ukrainian).

Mayer, B., Doleschall, M., Bender, B., Bartyik, J., Bősze, Z., Frenyó, L. V., & Kacskovics, I. (2005). Expression of the neonatal Fc receptor (FcRn) in the bovine mammary gland. Journal of Dairy Research, 72(1), 107–112.

Melnychuk, D. O., Tereshchenko, M. I., Tsvilikhovskyi, M. I., & Usatiuk, P. V. (1995). Vidminnosti bilkovoho skladu dvokh dilianok plazmatychnoi membrany epiteliiu tonkoho kyshechnyka. Dopovidi AN URSR. Ser. B, 9, 104–106 (in Ukrainian).

Melnychuk, D. O., Usatiuk, P. V., & Tsvilikhovskyi, M. I. (1998). Rol bilkovykh struktur plazmatychnoi membrany kyshkovoho epiteliiu u formuvanni kolostralnoho imunitetu novonarodzhenykh teliat. Visnyk Natsionalnoho Ahrarnoho Universytetu, 6, 13–20 (in Ukrainian).

Mostov, K. E., Verges, M., & Altschuler, Y. (2000). Membrane traffic in polarized epithelial cells. Current Opinion in Cell Biology, 12(4), 483–490.

Mund, M. E., Quail, L. K., Cook, C. L., Neuendorff, D. A., Banta, J. P., Welsh, Jr, T. H., & Randel, R. D. (2018). 91 Influence of cell mediated immune response of brahman cows on postpartum interval, colostral immunoglobulin concentration, and growth of their calves. Journal of Animal Science, 96(1), 48–49.

Nimmerjahn, F., & Ravetch, J. V. (2006). Fcγ receptors: old friends and new family members. Immunity, 24(1), 19–28.

Nimmerjahn, F., Anthony, R. M., & Ravetch, J. V. (2007). Agalactosylated IgG antibodies depend on cellular Fc receptors for in vivo activity. Proceedings of the National Academy of Sciences, 104(20), 8433–8437.

Ravetch, J. V. (1997). Fc receptors. Current Opinion in Immunology, 9(1), 121–125.

Ravetch, J. V., & Bolland, S. (2001). IGG FC-receptors. Annual Review of Immunology, 19(1), 275–290.

Rodewald, R., & Kraehenbuhl, J. P. (1984). Receptor-mediated transport of IgG. Journal of Cell Biology, 99(1), 159–164.

Schmidt, R. E., & Gessner, J. E. (2005). Fc receptors and their interaction with complement in autoimmunity. Immunology Letters, 100(1), 56–67.

Sibéril, S., Dutertre, C. A., Boix, C., Bonnin, E., Ménez, R., Stura, E., Jorieux, S., Fridman, W. H., & Teillaud, J. L. (2006). Molecular aspects of human FcgammaR interactions with IgG: functional and therapeutic consequences. Immunology Letters, 106(2), 111–118.

Simmons, C. Q., Thompson, C. H., Cawthon, B. E., Westlake, G., Swoboda, K. J., Kiskinis, E., Ess, K. C., & George, A. L., Jr (2018). Direct evidence of impaired neuronal Na/K-ATPase pump function in alternating hemiplegia of childhood. Neurobiology of Disease, 115, 29–38.

Stelter, S., Paul, M. J., Teh, A. Y.-H., Grandits, M., Altmann, F., Vanier, J., & Ma, J. K. (2019). Engineering the interactions between a plant-produced HIV antibody and human Fc receptors. Plant Biotechnology Journal, 18(2), 402–414.

Tan, P. S., Gavin, A. L., Barnes, N., Sears, D. W., Vremec, D., Shortman, K., Amigorena, S., Mottram, P. L., & Hogarth, P. M. (2003). Unique monoclonal antibodies define expression of Fc gamma RI on macrophages and mast cell lines and demonstrate heterogeneity among subcutaneous and other dendritic cells. The Journal of Immunology, 170(5), 2549–2556.

Van Der Feltz, M. J. M., De Groot, N., Bayley, J.-P., Lee, S. H., Verbeet, M. P., & De Boer, H. A. (2001). Lymphocyte homing and ig secretion in the murine mammary gland. Scandinavian Journal of Immunology, 54(3), 292–300.

Varol, C., Mildner, A., & Jung, S. (2015). Macrophages: development and tissue specialization. Annual Review of Immunology, 33(1), 643–675.

Abstract views: 111
PDF Downloads: 73
Published
2021-05-24
How to Cite
MasіukD. M. (2021). Modern concept of physiological signaling systems in cattle fetuses with the participation of FC-γ-receptors. Theoretical and Applied Veterinary Medicine, 9(2), 59-65. https://doi.org/10.32819/2021.92010