Determining the optimal time of insemination of goats using a thermal imager

Keywords: fertile period; sexual cycle; diagnostics; thermography

Abstract

The choice of the time of goat female insemination is one of the most significant factors determining the fertilisation result. Successful insemination can only be performed when it is close to ovulation (a few hours before). If insemination is carried out at the very beginning of the sexual hunt, then in females with a long course of this phenomenon, sperm may die before their contact with the ovule; if the sperm enters the genital system too late, the ovule may lose the ability to fertilise. Today, there are several ways to determine the fertile period of females, which have both advantages and disadvantages. Therefore, there is a need to improve existing and develop new methods for determining the optimal time of goat insemination. This can be a thermography (infrared thermography, infrared thermal imaging, thermal image, or thermal video) providing images in infrared rays, which shows a picture of the distribution of temperature fields. The investigation was focused on determining the dependence of the temperature gradients of goats’ external genitalia according to the manifestation of the stages of the sexual cycle. It was found that the external genitalia are characterized by a significant area of the palette of «hot» colours during the excitation stage of the sexual cycle. The «cold» colours (green and blue) dominate at the maturation stage. The results of studies reliably confirm the pattern of the temperature increase of the goats’ external genitalia during the period of sexual arousal compared to the maturation stage by 1.70 °C (5.1%) – 33.17 ± 0.18 °C and 31.46 ± 0.40 °C accordingly. So, for this purpose, using thermal imagers as a part of thermography is a way of preventive diagnosis of the optimal insemination time. It can be used for females of different species of animals and has a priority in animal reproduction in general. Such qualities as exceptional safety, autonomy and contactlessness make thermovisors irreplaceable in veterinary medicine.

Downloads

Download data is not yet available.

References

Ajbazov, M. M., & Aksenova, P. V. (2012). Effektivnaja biotehnologija vosproizvodstva molochnyh koz [Efficient Biotechnology for the Reproduction of Dairy Goats]. Sel’skohozjajstvennyj Zhurnal, 2(1), 138–140 (in Russian).
Alhamada, M., Debus, N., Lurette, A., & Bocquier, F. (2016). Validation of automated electronic oestrus detection in sheep as an alternative to visual observation. Small Ruminant Research, 134, 97–104.
Arrebola, F. A., Pardo, B., Sanchez, M., Lopez, M. D., & Perez-Marin, C. C. (2012). Factors influencing the success of an artificial insemination program in Florida goats. Spanish Journal of Agricultural Research, 10(2), 338.
Aungier, S. P. M., Roche, J. F., Duffy, P., Scully, S., & Crowe, M. A. (2015). The relationship between activity clusters detected by an automatic activity monitor and endocrine changes during the periestrous period in lactating dairy cows. Journal of Dairy Science, 98(3), 1666–1684.
Banuvalli, N., Harisha, M., Gururaj, P. M., Umesh, B. U., Gowda, B. G. V., & Gopala, G. T. (2015). Heat (estrus) detection techniques in dairy farms-a review. Theriogenology Insight - An International Journal of Reproduction in All Animals, 5(2), 125.
Bugrov A. D., Medvedovskij A. V., & Subbota A. V. (2005). Vyjavlenie i vyborka korov i telok v ohote [Vyjavlenie i vyborka korov i telok v ohote]. Institut Zhivotnovodstva UAAN, Har’kov (in Russian).
Chanvallon, A., Coyral-Castel, S., Gatien, J., Lamy, J.-M., Ribaud, D., Allain, C., Clément, P., & Salvetti, P. (2014). Comparison of three devices for the automated detection of estrus in dairy cows. Theriogenology, 82(5), 734–741.
Doherty, W. C., Price, E. O., & Katz, L. S. (1987). A note on activity monitoring as a supplement to estrus detection methods for dairy goats. Applied Animal Behaviour Science, 17(3–4), 347–351.
El-Tarabany, M. S., El-Tarabany, A. A., & Atta, M. A. (2018). Effect of season on hormonal profile and some biochemical parameters at different stages of estrous cycles in Baladi goats. Biological Rhythm Research, 50(2), 245–254.
Façanha, D. A. E., Peixoto, G. C. X., Ferreira, J. B., Souza, J. E. R. de, Paiva, R. D. M., & Ricarte, A. R. F. (2018). Detecting estrus in Canindé goats by two infrared thermography methods. Acta Veterinaria Brasilica, 12(2), 49–54.
Fatet, A., Pellicer-Rubio, M.-T., & Leboeuf, B. (2011). Reproductive cycle of goats. Animal Reproduction Science, 124(3–4), 211–219.
Faust, O., Rajendra Acharya, U., Ng, E. Y. K., Hong, T. J., & Yu, W. (2014). Application of infrared thermography in computer aided diagnosis. Infrared Physics & Technology, 66, 160–175.
Foote, R. H. (1975). Estrus detection and estrus detection aids. Journal of Dairy Science, 58(2), 248–256.
Fricke, P. M., Carvalho, P. D., Giordano, J. O., Valenza, A., Lopes, G., & Amundson, M. C. (2014). Expression and detection of estrus in dairy cows: the role of new technologies. Animal, 8, 134–143.
Habeeb, H. M. H., & Anne Kutzler, M. (2021). Estrus synchronization in the sheep and goat. Veterinary Clinics of North America: Food Animal Practice, 37(1), 125–137.
Heres, L., Dieleman, S. J., & van Eerdenburg, F. J. C. M. (2000). Validation of a new method of visual oestrus detection on the farm. Veterinary Quarterly, 22(1), 50–55.
Jablons’kyj, V. A., & Homyn, S. P. (Ed.) (2006). Veterynarne akusherstvo, ginekologija ta biotehnologija vidtvorennja tvaryn z osnovamy andrologii’ [Veterinary obstetrics, gynecology and biotechnology of animal reproduction with the basics of andrology]. Nova Knyga, Vinnycja (in Ukrainian).
Jasti, N., Bista, S., Bhargav, H., Sinha, S., Gupta, S., Chaturvedi, S. K., & Gangadhar, B. N. (2019). Medical applications of Infrared thermography: A narrative review. Journal of Stem Cells, 14(1), 35–53.
Jiang, Y.-F., Hsu, M.-C., Cheng, C.-H., Tsui, K.-H., & Chiu, C.-H. (2016). Ultrastructural changes of goat corpus luteum during the estrous cycle. Animal Reproduction Science, 170, 38–50.
Kemp, B., & Soede, N. M. (1997). Consequences of variation in interval from insemination to ovulation on fertilization in pigs. Journal of Reproduction and Fertility-Supplements only, 52, 79–90.
Kenfack, A., Ngoula, F., Yombi, M. J. P., Tendonkeng, F., Defang, H. F., Eba, Y. R., Togola D., & Pamo, T. E. (2013). Prominent signs of oestrus in the West African Dwarf Goat. Iranian Journal of Applied Animal Science, 3(4), 791–795.
Koshevoj, V. P., Fedorenko, S. J., Ivanchenko, M. M., Naumenko, S. V., Besedovs’ka, K. S., & Skljarov, P. M. (2013). Termografichna diagnostyka u veterynarnomu akusherstvi, ginekologii’ ta andrologii’ (metodychni rekomendacii’) [Thermographic diagnostics in veterinary obstetrics, gynecology and andrology (methodical recommendations)]. RVV HDZVA, Harkiv (in Ukrainian).
Koshevoj, V. P., Skljarov, P. M., & Naumenko, S. V. (2011). Problemy vidtvorennja ovec’ i kiz ta shljahy i’h vyrishennja: monografija [Problems of reproduction of sheep and goats and ways to solve them: a monograph]. Gamalia, Kharkiv-Dnipropetrovsk (in Ukrainian).
Lahiri, B. B., Bagavathiappan, S., Jayakumar, T., & Philip, J. (2012). Medical applications of infrared thermography: A review. Infrared Physics & Technology, 55(4), 221–235.
Leidl, W., & Stolla, R. (1976). Measurement of electric resistance of the vaginal mucus as an aid for heat detection. Theriogenology, 6(2–3), 237–249.
Leigh, O. O., Raheem, A. K., & Oluwadamilare Olugbuyiro, J. A. (2010). Improving the reproductive efficiency of the goat: vaginal cytology and vulvar biometry as predictors of synchronized estrus/breeding time in west african dwarf goat. International Journal of Morphology, 28(3).
Ljubec’kyj, V. J., Zhuk, Ju. V., Val’chuk, O. A., Derkach, S. S., & Kovpak, V. V. (2020). Laboratorna i funkcional’na diagnostyka u veterynarnomu akusherstvi, ginekologii’ ta andrologii’ [Laboratory and functional diagnostics in veterinary obstetrics, gynecology and andrology]. NUBiP Ukrai’ny, Kyi’v (in Ukrainian).
Malahova, L.S., Krivoruchko, S.V., & Meshherjakov, V.A. (2015). Podbor diagnosticheskih naborov dlja opredelenija gormonal’nogo urovnja [Selection of diagnostic kits for determining hormonal levels]. Sel’skohozjajstvennyj Zhurnal, 2(8), 73–77 (in Russian).
Martínez-Álvarez, L. E., Hernández-Cerón, J., González-Padilla, E., Perera-Marín, G., & Valencia, J. (2007). Serum LH peak and ovulation following synchronized estrus in goats. Small Ruminant Research, 69(1–3), 124–128.
McDougall, S., & Voermans, M. (2002). Influence of estrus on somatic cell count in dairy goats. Journal of Dairy Science, 85(2), 378–383.
McManus, C., Tanure, C. B., Peripolli, V., Seixas, L., Fischer, V., Gabbi, A. M., Menegassi, S. R. O., Stumpf, M. T., Kolling, G. J., Dias, E., & Costa, J. B. G. (2016). Infrared thermography in animal production: An overview. Computers and Electronics in Agriculture, 123, 10–16.
Medvedev, G. F., Gavrichenko, N. I., Dolin, I. A., & Kaplunov, V. R. (2019). Akusherstvo i reprodukcija sel’skohozjajstvennyh zhivotnyh. Plodovitost’ i besplodie [Obstetrics and reproduction of farm animals. Fertility and infertility]. BGSHA, Gorki (in Russian).
Mičiaková, M., Strapák, P., Szencziová, I., Strapáková, E., & Hanušovský, O. (2018). Several methods of estrus detection in cattle dams: a review. Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, 66(2), 619–625.
Montanholi, Y. R., Odongo, N. E., Swanson, K. C., Schenkel, F. S., McBride, B. W., & Miller, S. P. (2008). Application of infrared thermography as an indicator of heat and methane production and its use in the study of skin temperature in response to physiological events in dairy cattle (Bos taurus). Journal of Thermal Biology, 33(8), 468–475.
Moroni, P., Pisoni, G., Savoini, G., van Lier, E., Acuña, S., Damián, J. P., & Meikle, A. (2007). Influence of estrus of dairy goats on somatic cell count, milk traits, and sex steroid receptors in the mammary gland. Journal of Dairy Science, 90(2), 790–797.
Morozov, A. M., Mokhov, E. M., Kadykov, V. A., & Panova, A. V. (2018). Medical thermography: capabilities and perspectives. Kazan Medical Journal, 99(2), 264–270.
Nääs, I. A., Garcia, R. G., & Caldara, F. R. (2014). Infrared thermal image for assessing animal health and welfare. Journal of Animal Behaviour and Biometeorology, 2(3), 66–72.
Ola, S. I., Sanni, W. A., & Egbunike, G. (2006). Exfoliative vaginal cytology during the oestrous cycle of West African dwarf goats. Reproduction Nutrition Development, 46(1), 87–95.
Palomares, R. A. (2021). Estrus detection. Bovine Reproduction (2nd ed.), 431–446. Portico.
Reith, S., & Hoy, S. (2018). Review: Behavioral signs of estrus and the potential of fully automated systems for detection of estrus in dairy cattle. Animal, 12(2), 398–407.
Roelofs, J. B., Van Eerdenburg, F. J. C. M., Hazeleger, W., Soede, N. M., & Kemp, B. (2006). Relationship between progesterone concentrations in milk and blood and time of ovulation in dairy cattle. Animal Reproduction Science, 91(3–4), 337–343.
Romano, J. E., Alkar, A., Fuentes-Hernández, V. O., & Amstalden, M. (2016). Continuous presence of male on estrus onset, estrus duration, and ovulation in estrus-synchronized Boer goats. Theriogenology, 85(7), 1323–1327.
Scolari, S., Evans, R., Knox, R., Tamassia, M., & Clark, S. (2009). Determination of the relationship between vulvar skin temperatures and time of ovulation in swine using digital infrared thermography. Reproduction, Fertility and Development, 22(1), 178-178.
Senger, P. L. (1994). The estrus detection problem: new concepts, technologies, and possibilities. Journal of Dairy Science, 77(9), 2745–2753.
Sergeev, M. A., & Malova, O. V. (2012). Diagnostika beremennosti i besplodija u melkogo rogatogo skota [Diagnosis of pregnancy and infertility in small cattle]. Uchenye Zapiski Kazanskoj Gosudarstvennoj Akademii Veterinarnoj Mediciny im. N.Je. Baumana, 210(2), 205–210 (in Russian).
Sharma, M., & Sharma, N. (2016). Vaginal cytology: an historical perspective on its diagnostic use. Advances in Animal and Veterinary Sciences, 4(6), 283–288.
Skliarov, P., Pérez, C., Petrusha, V., Fedorenko, S., & Bilyi, D. (2021). Induction and synchronization of oestrus in sheep and goats. Journal of Central European Agriculture, 22(1), 39-53.
Stevenson, J. S., & Britt, J. H. (1977). Detection of estrus by three methods. Journal of Dairy Science, 60(12), 1994–1998.
Thomas, J., Patterson, D., Smith, M., Brown, S., Poock, S., Bishop, B., Abel, J., Locke, C., & Knickmeyer, E. (2021). Split-time AI: Using estrus detection aids to optimize timed artificial insemination [Electronic resource]. Access mode: https://hdl.handle.net/10355/85195.
Tsuma, V. T., Khan, M. S., Okeyo, A. M., & Ibrahim, M. N. (2015). A training manual on artificial insemination in goats. ILRI Manual 19. Nairobi, Kenya: International Livestock Research.
Widayati, T., Sitaresmi, I., Bintara, S., & Widyobroto, B.P. (2018). Estrus detection through vaginal ph in saanen etawah crossbreed goats. Pakistan Journal of Biological Sciences, 21(8), 383–386.

Abstract views: 32
PDF Downloads: 27
Published
2022-05-15
How to Cite
Skliarov, P., Pérez-Marín, C. C., Petrusha, V. H., Onyshchenko, O. V., Fedorenko, S. Y., & Kibkalo, D. V. (2022). Determining the optimal time of insemination of goats using a thermal imager. Theoretical and Applied Veterinary Medicine, 10(2), 3-8. Retrieved from https://bulletin-biosafety.com/index.php/journal/article/view/333

Most read articles by the same author(s)