Сriterion for selection of feed additives with different biological effect in the feeding of growing pigs
Abstract
To achieve the pork production profitability, it is necessary to eliminate as many unfavorable factors as possible preventing the animal productivity increase. The use of various feed additives is one of the promising directions to assess the state of health and reducing the risks of the development of pathological processes among livestock. The paper presents the results of assessing the effect of feed additives on pig growth performance depending on the initial gut microbiome of healthy store pigs of the large white breed. The composition of the gut microbial population of the experimental animals has been previously assessed, upon which the pigs have been divided into groups. Animals with reduced content of Escherichia coli took BioPlus 2B, with reduced content of lactobacilli – Bacell, with normal ratio of Escherichia coli, bifido- and lactobacilli – Extract SV. The first two drugs are probiotics, the last one is a phytobiotic with antioxidant and antimicrobial properties. Consumption of these additives together with a balanced traditional diet changed the population intestinal microflora composition in favor of Bifidobacterium spp. and Lactobacillus spp., inhibiting the growth of opportunistic pathogenic microflora having favorable effect on animal productivity. The highest increase in the total animal weight has been observed with the consumption of Extract SV (p < 0.01). In the future, it is planned to investigate the effect of drugs with probiotic and antioxidant properties on the productivity indicators of growing pigs under the conditions of simultaneous consumption.Downloads
References
Abdellah, Y. A. Y., Chen, H.-Y., Sun, S.-S., Yang, X., Luo, Y.-S., Bello, A., Mohamed, T. A., Ren, R.-J., Li, W.-T., Ahmed, R. M., & Wang, R.-L. (2023). Evaluating the impact of the humic acid amendment on antibiotic resistance genes reduction and product quality during swine manure composting. Journal of Environmental Chemical Engineering, 11(5).
Alayande, K. A., Aiyegoro, O. A., & Ateba, C. N. (2020). Probiotics in Animal Husbandry: Applicability and Associated Risk Factors. Sustainability, 12(3), 1087.
Azizi, A. F. N., Uemura, R., Omori, M., Sueyoshi, M., & Yasuda, M. (2022). Effects of Probiotics on Growth and Immunity of Piglets. Animals, 12(14), 1786.
Bakun, Y., Ulko, L., & Nechiporenko, O. (2021). Effect of probiotics Bacillus coagulans and Bacillus megaterium on intestinal microbiota of piglets. Scientific Messenger of LNU of Veterinary Medicine and Biotechnologies, 23(104), 136–140.
Balciunas, E. M., Al Arni, S., Converti, A., Leblanc, J. G., & Oliveira, R. P. d. S. (2015). Production of bacteriocin‐like inhibitory substances (BLIS) by Bifidobacterium lactis using whey as a substrate. International Journal of Dairy Technology, 69(2), 236-242.
Bian, G., Ma, S., Zhu, Z., Su, Y., Zoetendal, E. G., Mackie, R., Liu, J., Mu, C., Huang, R., Smidt, H., & Zhu, W. (2016). Age, introduction of solid feed and weaning are more important determinants of gut bacterial succession in piglets than breed and nursing mother as revealed by a reciprocal cross‐fostering model. Environmental Microbiology, 18(5), 1566-1577.
Celi, P., Cowieson, A. J., Fru-Nji, F., Steinert, R. E., Kluenter, A. M., & Verlhac, V. (2017). Gastrointestinal functionality in animal nutrition and health: New opportunities for sustainable animal production. Animal Feed Science and Technology, 234, 88-100.
Domínguez Díaz, L., Fernández-Ruiz, V., & Cámara, M. (2019). The frontier between nutrition and pharma: The international regulatory framework of functional foods, food supplements and nutraceuticals. Critical Reviews in Food Science and Nutrition, 60(10), 1738–1746.
Duan, H., Lu, L., Zhang, L., Li, J., Gu, X., & Li, J. (2023). Effects of Lactobacillus Lactis Supplementation on Growth Performance, Hematological Parameters, Meat Quality and Intestinal Flora in Growing-Finishing Pigs. Animals, 13(7), 1247.
Duan, X., Tian, G., Chen, D., Huang, L., Zhang, D., Zheng, P., Mao, X., Yu, J., He, J., Huang, Z., & Yu, B. (2019). Mannan oligosaccharide supplementation in diets of sow and (or) their offspring improved immunity and regulated intestinal bacteria in piglet1. Journal of Animal Science, 97(11), 4548–4556.
Duarte, M. E., Tyus, J., & Kim, S. W. (2020). Synbiotic Effects of Enzyme and Probiotics on Intestinal Health and Growth of Newly Weaned Pigs Challenged With Enterotoxigenic F18+Escherichia coli. Frontiers in Veterinary Science, 7.
Duarte, M. E., & Kim, S. W. (2022). Phytobiotics from Oregano Extracts Enhance the Intestinal Health and Growth Performance of Pigs. Antioxidants, 11(10), 2066.
Feng, L., Wu, H., Zhang, J., & Brix, H. (2021). Simultaneous elimination of antibiotics resistance genes and dissolved organic matter in treatment wetlands: Characteristics and associated relationship. Chemical Engineering Journal, 415, 128966.
Fortuoso, B. F., dos Reis, J. H., Gebert, R. R., Barreta, M., Griss, L. G., Casagrande, R. A., de Cristo, T. G., Santiani, F., Campigotto, G., Rampazzo, L., Stefani, L. M., Boiago, M. M., Lopes, L. Q., Santos, R. C. V., Baldissera, M. D., Zanette, R. A., Tomasi, T., & Da Silva, A. S. (2019). Glycerol monolaurate in the diet of broiler chickens replacing conventional antimicrobials: Impact on health, performance and meat quality. Microbial Pathogenesis, 129, 161–167.
Fouhse, J. M., Zijlstra, R. T., & Willing, B. P. (2016). The role of gut microbiota in the health and disease of pigs. Animal Frontiers, 6(3), 30–36.
Frese, S. A., Parker, K., Calvert, C. C., & Mills, D. A. (2015). Diet shapes the gut microbiome of pigs during nursing and weaning. Microbiome, 3(1).
Gebru, E., Lee, J. S., Son, J. C., Yang, S. Y., Shin, S. A., Kim, B., Kim, M. K., & Park, S. C. (2010). Effect of probiotic-, bacteriophage-, or organic acid-supplemented feeds or fermented soybean meal on the growth performance, acute-phase response, and bacterial shedding of grower pigs challenged with Salmonella enterica serotype Typhimurium1. Journal of Animal Science, 88(12), 3880-3886.
Hai, N. V. (2015). The use of probiotics in aquaculture. Journal of Applied Microbiology, 119(4), 917-935.
He, Y., Jinno, C., Kim, K., Wu, Z., Tan, B., Li, X., Whelan, R., & Liu, Y. (2020) Dietary Bacillus spp. enhanced growth and disease resistance of weaned pigs by modulating intestinal microbiota and systemic immunity. Journal of Animal Science and Biotechnology. 11(1).
Huan, Y., Kong, Q., Mou, H., & Yi, H. (2020). Antimicrobial Peptides: Classification, Design, Application and Research Progress in Multiple Fields. Frontiers in Microbiology, 11.
Huang, C., Qiao, S., Li, D., Piao, X., & Ren, J. (2004). Effects of Lactobacilli on the Performance, Diarrhea Incidence, VFA Concentration and Gastrointestinal Microbial Flora of Weaning Pigs. Asian-Australasian Journal of Animal Sciences, 17(3), 401–409.
Jia, F., Zhang, Y., Wang, J., Peng, J., Zhao, P., Zhang, L., Yao, H., Ni, J., & Wang, K. (2019). The effect of halogenation on the antimicrobial activity, antibiofilm activity, cytotoxicity and proteolytic stability of the antimicrobial peptide Jelleine-I. Peptides, 112, 56-66.
Kim, K. H., Ingale, S. L., Kim, J. S., Lee, S. H., Lee, J. H., Kwon, I. K., & Chae, B. J. (2014). Bacteriophage and probiotics both enhance the performance of growing pigs but bacteriophage are more effective. Animal Feed Science and Technology, 196, 88-95.
Kogut, M. H., & Arsenault, R. J. (2016). Editorial: Gut Health: The New Paradigm in Food Animal Production. Frontiers in Veterinary Science, 3.
Kozyr', V. S., & Svezhentsov, A. I. (2002). Prakticheskiye metodiki issledovaniy v zhivotnovodstve [Practical research methods in livestock]. Dnipropetrovsk Art-Press (in Russian).
Lam, S. J., O'Brien-Simpson, N. M., Pantarat, N., Sulistio, A., Wong, E. H. H., Chen, Y.-Y., Lenzo, J. C., Holden, J. A., Blencowe, A., Reynolds, E. C., & Qiao, G. G. (2016). Combating multidrug-resistant Gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nature Microbiology, 1(11).
Lan, L., Kong, X., Sun, H., Li, C., & Liu, D. (2019). High removal efficiency of antibiotic resistance genes in swine wastewater via nanofiltration and reverse osmosis processes. Journal of Environmental Management, 231, 439-445.
Ma, X., Guo, N., Ren, S., Wang, S., & Wang, Y. (2019). Response of antibiotic resistance to the co-existence of chloramphenicol and copper during bio-electrochemical treatment of antibiotic-containing wastewater. Environment International, 126, 127-133.
Manyi-Loh, C., Mamphweli, S., Meyer, E., & Okoh, A. (2018). Antibiotic Use in Agriculture and Its Consequential Resistance in Environmental Sources: Potential Public Health Implications. Molecules, 23(4).
Markowiak, P., & Śliżewska, K. (2018). The role of probiotics, prebiotics and synbiotics in animal nutrition. Gut Pathogens, 10(1).
Mikkili, I., Venkateswarulu, T. C., Peele, A. K., Bobby, N., & Krupanidhi, S. (2019). Bioactive molecules of probiotic bacteria and their mechanism of action: a review. 3 Biotech, 9(8).
Mun, D., Kyoung, H., Kong, M., Ryu, S., Jang, K. B., Baek, J., Park, K. II, Song, M., & Kim, Y. (2021). Effects of Bacillus-based probiotics on growth performance, nutrient digestibility, and intestinal health of weaned pigs. Journal of Animal Science and Technology. 63(6), 1314-1327.
Munezero, O., Cho, S., & Kim, I.H. (2023) The effects of synbiotics-glyconutrients on growth performance, nutrient digestibility, gas emission, meat quality, and fatty acid profile of finishing pigs. Journal of Animal Science and Technology.
Nesse, L. L., Osland, A. M., & Vestby, L. K. (2023). The Role of Biofilms in the Pathogenesis of Animal Bacterial Infections. Microorganisms, 11(3).
Oliveira, D., Vidal, L., Ares, G., Walter, E. H. M., Rosenthal, A., & Deliza, R. (2017). Sensory, microbiological and physicochemical screening of probiotic cultures for the development of non-fermented probiotic milk. LWT - Food Science and Technology, 79, 234-241.
Podobied, L. I. (2018). Probiotyky, pidkyslyuvachi, hepatoprotektory: diya na orhanizm svyney [Probiotics, acidifiers, hepatoprotectors: effect on pigs organism]. Efektyvne Tvarynnytstvo, (4-5), 43-48 (in Russian).
Polishchuk, O. O., & Bulavkina, T. P. (2010). Suchasni kormovi dobavky u hodivli tvaryn ta ptytsi. Visnyk Poltavsʹkoyi Derzhavnoyi Ahrarnoyi Akademiyi, (2), 63-66 (in Ukrainian).
Rahman, M. M., Alam Tumpa, M. A., Zehravi, M., Sarker, M. T., Yamin, M., Islam, M. R., Harun-Or-Rashid, M., Ahmed, M., Ramproshad, S., Mondal, B., Dey, A., Damiri, F., Berrada, M., Rahman, M. H., & Cavalu, S. (2022). An Overview of Antimicrobial Stewardship Optimization: The Use of Antibiotics in Humans and Animals to Prevent Resistance. Antibiotics, 11(5).
Rhouma, M., Fairbrother, J. M., Beaudry, F., & Letellier, A. (2017). Post weaning diarrhea in pigs: risk factors and non-colistin-based control strategies. Acta Veterinaria Scandinavica, 59(1).
Roca, I., Akova, M., Baquero, F., Carlet, J., Cavaleri, M., Coenen, S., Findlay, D., Gyssens, I., Heure, O. E., Kahlmeter, G., Kruse, H., Laxminarayan, R., Liébana, E., López-Cerero, L., MacGowan, A., Martins, M., Rodríguez-Baño, J., Rolain, J. M., Segovia, C., Sigauque, B., Tacconelli, E., Wellington, E., & Vila, J. (2015). The global threat of antimicrobial resistance: science for intervention. New Microbes and New Infections, 6, 22-29.
Rueda, A.F., Samuel, R. & St-Pierre, B. (2021) Investigating the Effects of a Phytobiotics-Based Product on the Fecal Bacterial Microbiome of Weaned Pigs. Animals. 11(7).
Saracila, M., Untea, A.E., & Panaite, T.D. (2021) Evaluation of the Effect of Synbiotic in Piglets’ Diet on the Nutritional Quality of Pork. Archiva Zootechnica. 24(2), 67-75.
Sauerbronn, J. F. R., Teixeira, C. d. S., & Lodi, M. D. d. F. (2019). Health, aesthetics, and efficiency: relationships between women’s eating practices and their bodies. Cadernos EBAPE.BR, 17(2), 389-402.
Sidashova, S. O., Avdos'yeva, I. K., & Hryhorasheva, I. M. (2014). Metodychnyy pidkhid do otsinky efektyvnosti probiotychnykh preparativ u svynarstvi [A methodical approach to assessing the effectiveness of probiotics in pig farming]. Naukovo-tekhnichnyi biuleten Instytutu biolohii tvaryn i Derzhavnoho naukovo-doslidnoho kontrolnoho instytutu vetpreparativ ta kormovykh dobavok, 15(4), 158-167 (in Ukrainian).
Speiser, S., Scharek-Tedin, L., Mader, A., Saalmüller, A., Gerner, W., Männer, K., Stadler, K., & Zentek, J. (2015) Immune response of piglets on a PRRSV vaccination-Altered by different feed additives? Livestock Science. 174, 96-104.
Stokes, C. R. (2017). The development and role of microbial-host interactions in gut mucosal immune development. Journal of Animal Science and Biotechnology, 8(1).
Sun, W., Chen, W., Meng, K., Cai, L., Li, G., Li, X., & Jiang, X. (2023) Dietary Supplementation with Probiotic Bacillus licheniformis S6 Improves Intestinal Integrity via Modulating Intestinal Barrier Function and Microbial Diversity in Weaned Piglets. Biology. 12(2).
Torres, M. D. T., Sothiselvam, S., Lu, T. K., & de la Fuente-Nunez, C. (2019). Peptide Design Principles for Antimicrobial Applications. Journal of Molecular Biology, 431(18), 3547-3567.
Vasquez, R., Oh, J. K., Song, J. H., & Kang, D.-K. (2022). Gut microbiome-produced metabolites in pigs: a review on their biological functions and the influence of probiotics. Journal of Animal Science and Technology, 64(4), 671-695.
Wang, L., Yang, Y., Cai, B., Cao, P., Yang, M., & Chen, Y. (2014). Coexpression and Secretion of Endoglucanase and Phytase Genes in Lactobacillus reuteri. International Journal of Molecular Sciences, 15(7), 12842-12860.
Wang, X., Tian, Z., Azad, M. A. K., Zhang, W., Blachier, F., Wang, Z., & Kong, X. (2020) Dietary supplementation with Bacillus mixture modifies the intestinal ecosystem of weaned piglets in an overall beneficial way. Journal of Applied Microbiology. 130(1), 233-246.
Yanovsʹka, O. V. (2009). Naukove obgruntuvannya dyferentsiyovanoho zastosuvannya probiotychnykh ta prebiotychnykh preparativ u praktytsi hodivli svyney [Scientific rationale for differentiated use of probiotics and prebiotics in pig feeding]. Visnyk Poltavskoi Derzhavnoi Ahrarnoi Akademii, (2), 78-81 (in Ukrainian).
Zeng, Y., Wang, Z., Zou, T., Chen, J., Li, G., Zheng, L., Li, S., & You, J. (2021). Bacteriophage as an Alternative to Antibiotics Promotes Growth Performance by Regulating Intestinal Inflammation, Intestinal Barrier Function and Gut Microbiota in Weaned Piglets. Frontiers in Veterinary Science, 8.
Zhou, Z., Huang, J., Hao, H., Wei, H., Zhou, Y., & Peng, J. (2019). Applications of new functions for inducing host defense peptides and synergy sterilization of medium chain fatty acids in substituting in-feed antibiotics. Journal of Functional Foods, 52, 348-359.
Abstract views: 221 PDF Downloads: 144






